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One-factorization
Definitions

Complete k-uniform hypergraph on n vertices, K k
n :

Vertex set = {0, . . . , n − 1}
Edge set = All k-subsets of the {0, . . . , n − 1}

A one-factor of K k
n : a set of n/k pairwise disjoint edges that

partition the vertex set of K k
n .

A one-factorization of K k
n : a partition of all edges of K k

n into
one-factors.

V (K 3
6 ) = {0, . . . , 5},

E (K 3
6 ) =

{
{0, 1, 2}, {3, 4, 5},

{0, 1, 3}, {2, 4, 5},

. . .
}

∴ K 3
6 has a unique one-factorization.
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One-factorizations
Known results

Theorem (Baranyai, 1975)

K k
n has a one-factorization if only if k |n.

N(K k
n ) = Number of nonisomorphic one-factorizations of K k

n

n 2 4 6 8 10 12 14

N(K 2
n ) 1 1 1 6 396 526915620[DGM] 1132835421602062347[KÖ]

n 3 6 9

N(K 3
n ) 1 1 ?[MR]

[DGM]: Dinitz, Garnick, McKay (1994)

[KÖ]: Kaski, Österg̊ard (2009)

[MR]: Mathon, Rosa (1983): K 3
9 has 130 one-factorizations with automorphism

group of order > 4
Mahdad Khatirinejad (Aalto) One-Factorizations of K3
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Isomorphism testing
Graph encoding

F : a set of disjoint one-factors
associate−−−−−→ G (F): a graph

0 1 2 3 4 5 6 7 8

{0, 1, 2}

{3, 4, 5}

{6, 7, 8} {0, 1, 3}

{4, 6, 8}

{2, 5, 7}

Proposition

Two sets of one-factors F1 and F2 are isomorphic if and only if the graphs
G (F1) and G (F2) are isomorphic.
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Classification
The search space

K 3
9 has

(9
3

)
edges.

K 3
9 has

(9
3

)(6
3

)
/3! = 280 one-factors.

A one-factorization of K 3
9 has

(9
3

)
/3 = 28 one-factors.

So, we need to decide how many sets out of the
(280
28

)
≈ 3× 1038 sets

form a one-factorization (up to isomorphism).
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Classification
Seeds

We may assume that the edges {0, 1, i }, 2 ≤ i ≤ 8, belong to the first
seven one-factors.

Definition

Seed: a set of seven one-factors {F1, . . . ,F7} so that there exist
0 ≤ a < b ≤ 8 such that

{{a, b, i } : 0 ≤ i ≤ 8, i 6= a, b} ⊂
7⋃

j=1

Fj .

Every one-factorization contains exactly
(9
2

)
= 36 seeds.
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Classification
Classification of seeds

We start by classifying the seeds up to isomorphism:

In a one-factorization:

First one-factor (up to isomorphism):{
{0, 1, 2}, {3, 4, 5}, {6, 7, 8}

}
Second one-factor (up to isomorphism):{

{0, 1, 3}, {2,

4

, 8},

{5, 6, 7}

}

(1st choice)

{
{0, 1, 3}, {2, 6, 8}, {4, 5, 7}

}
(2nd choice)

There are 208 non-isomorphic seeds.
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Classification
Classification of seeds

We start by classifying the seeds up to isomorphism:

A backtrack search, adding one-factors that contain an edge of the form
{0, 1, i } one at a time and carrying out isomorph rejection.

The nauty library by McKay is used to handle the G (F) graphs.

Table: Number of partial seeds

# of one-factors in a partial seed 1 2 3 4 5 6 7

# of partial seeds 1 2 11 45 156 277 208

There are 208 non-isomorphic seeds.
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Classification
Extending the seeds

By extending each classified seed in all possible ways, we can visit
every isomorphism class of one-factorizations.

The problem of finding all one-factorizations that contain a given
seed is an instance of the exact cover problem:

Given a finite set U and a collection C of subsets of U, find all partitions
of U consisting of sets in C.

U = the remaining uncovered edges of K 3
9

C = the one-factors of K 3
9

The libexact library by Kaski and Pottonen is used to solve the exact
cover instances.

The instances of finding one-factorizations from the given seeds lead to a
total of 8 185 376 solutions.
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Classification
Isomorph rejection

Methods available:

(1) Recorded objects

(2) Canonical augmentation (by McKay, 1998)

...
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Classification
Isomorph rejection

Methods available:

(1) Recorded objects

(2) Canonical augmentation (by McKay, 1998)

...

For isomorph-free exhaustive generation apply the following tests to a completed

one-factorization F :

(i) If F is obtained by extending a seed S, check whether F is the
(lexicographic) minimum of its Aut(S)-orbit.

(ii) Identify a canonical Aut(F)-orbit of seeds contained by F , and then
check whether the seed from which F was extended is in the
canonical orbit.

If F satisfies both tests, we accept F , otherwise we reject F .
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Classification
Speeding up the test

F ,G : two one-factors of K 3
9

0 1 2

3 4 5

6 7 8

α(F ,G ) = 9

0 1 2

3 4 5

6 7 8

α(F ,G ) = 7

0 1 2

3 4 5

6 7 8

α(F ,G ) = 6

S = {F1, . . . ,F7}: a seed
associate−−−−−→ d(S) = {d(F1), . . . , d(F7)}: an invariant,

where
d(Fj) =

∑
i 6=j

α(Fi ,Fj),

Speed up:

The canonical Aut(F)-orbit of seeds in (ii) is required to have the
lexicographically smallest invariant d(S).
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Classification
Main result

There are exactly 103 000 isomorphism classes of one-factorizations of K 3
9 .
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Classification
Orders of the automorphism groups

|Aut(F)| # |Aut(F)| #

1 99 453 16 2
2 3 151 18 3
3 151 24 5
4 111 36 1
6 84 42 1
7 2 54 2
8 10 56 1
9 1 336 1

12 17 432 1
14 2 1 512 1
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A consistency check
Validating the classification

During the main search, we record

(i) |Aut(Si )|: for each seed Si ,
(ii) Mi : the total number of one-factorizations found by the exact cover

algorithm as extensions of Si , and

(iii) |Aut(Fj)|: for each isomorphism class Fj of one-factorizations.

By the orbit-stabilizer theorem, the total # of one-factorizations of K 3
9 :

1(9
2

) 208∑
i=1

9! ·Mi

|Aut(Si )|
=

103 000∑
i=1

9!

|Aut(Fi )|
.

Both the sides evaluate to 36 696 023 040.
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=

103 000∑
i=1

9!

|Aut(Fi )|
.

Both the sides evaluate to 36 696 023 040.
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A consistency check
Validating the classification of seeds

N partial seeds F1, . . . ,FN with |Fi | = m − 1

N ′ partial seeds F ′
1, . . . ,F ′

N ′ with |F ′
i | = m

Mi = the number of candidate one-factors when extending Fi

The total number of partial seeds of size m (by the orbit-stabilizer thm):

1

m

N∑
i=1

7! ·Mi

|Aut(Fi )|
=

N ′∑
i=1

7!

|Aut(F ′
i )|
.

For m = 1, . . . , 7 both sides evaluate to 70, 1 890, 25 410, 182 910,
701 820, 1 323 420, and 942 900, respectively.
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