# A Census of One-Factorizations of the Complete 3-Uniform Hypergraph of Order 9

#### Mahdad Khatirinejad

Department of Communications & Networking Aalto University (formerly: Helsinki University of Technology)

> Research supported by: The NSERC of Canada The Academy of Finland

#### 13 April 2010 ALCOMA10, Thurnau

Joint work with:

#### Patric R. J. Östergård



Mahdad Khatirinejad (Aalto)

One-Factorizations of Ka

▲ ■ ■ つへへ 13 April 10 2 / 15

イロト イヨト イヨト イヨト

Definitions

 Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}

Definitions

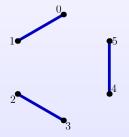
- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .

Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.

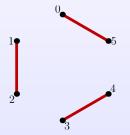
Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



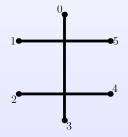
Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



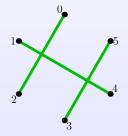
Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



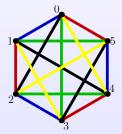
Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.



ヘロン 人間と 人間と 人間と

Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.

$$egin{aligned} &\mathcal{K}_6^3) = \{0,\ldots,5\}, \ & E(\mathcal{K}_6^3) = ig\{\{0,1,2\},\{3,4,5\}, \ & e^{-1} & e^$$

Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.

$$\mathcal{L}(\mathcal{K}_{6}^{3}) = \{0, \dots, 5\},\$$
  
 $E(\mathcal{K}_{6}^{3}) = \{\{0, 1, 2\}, \{3, 4, 5\}\}$   
 $\{0, 1, 3\}, \{2, 4, 5\}$   
 $\dots\}$ 

Definitions

- Complete k-uniform hypergraph on n vertices, K<sub>n</sub><sup>k</sup>: Vertex set = {0,..., n - 1} Edge set = All k-subsets of the {0,..., n - 1}
- A **one-factor** of  $K_n^k$ : a set of n/k pairwise disjoint edges that partition the vertex set of  $K_n^k$ .
- A **one-factorization** of  $K_n^k$ : a partition of all edges of  $K_n^k$  into one-factors.

$$\mathcal{M}(\mathcal{K}_6^3) = \{0, \dots, 5\},\ \mathcal{E}(\mathcal{K}_6^3) = \{\{0, 1, 2\}, \{3, 4, 5\},\ \{0, 1, 3\}, \{2, 4, 5\},\ \dots\}$$

 $\therefore K_6^3$  has a unique one-factorization.

イロト イポト イヨト イヨト

Known results

#### Theorem (Baranyai, 1975)

 $K_n^k$  has a one-factorization if only if k|n.

 $N(K_n^k) =$  Number of nonisomorphic one-factorizations of  $K_n^k$ 

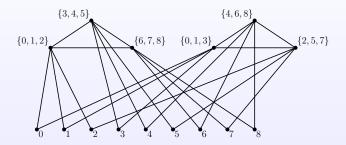
[DGM]: Dinitz, Garnick, McKay (1994) [KÖ]: Kaski, Östergård (2009) [MR]: Mathon, Rosa (1983):  $K_9^3$  has 130 one-factorizations with automorphism group of order > 4

Mahdad Khatirinejad (Aalto)

# **Isomorphism testing**

#### Graph encoding

 $\mathcal{F}$ : a set of disjoint one-factors  $\xrightarrow{associate} G(\mathcal{F})$ : a graph



#### Proposition

Two sets of one-factors  $\mathcal{F}_1$  and  $\mathcal{F}_2$  are isomorphic if and only if the graphs  $G(\mathcal{F}_1)$  and  $G(\mathcal{F}_2)$  are isomorphic.

イロト イポト イヨト イヨト

The search space

- $K_9^3$  has  $\binom{9}{3}$  edges.
- $K_9^3$  has  $\binom{9}{3}\binom{6}{3}/3! = 280$  one-factors.
- A one-factorization of  $K_9^3$  has  $\binom{9}{3}/3 = 28$  one-factors.

The search space

- $K_9^3$  has  $\binom{9}{3}$  edges.
- $K_9^3$  has  $\binom{9}{3}\binom{6}{3}/3! = 280$  one-factors.
- A one-factorization of  $K_9^3$  has  $\binom{9}{3}/3 = 28$  one-factors.

So, we need to decide how many sets out of the  $\binom{280}{28}\approx 3\times 10^{38}$  sets form a one-factorization (up to isomorphism).

イロト イポト イヨト イヨト 二日

Seeds

We may assume that the edges  $\{0, 1, i\}$ ,  $2 \le i \le 8$ , belong to the first seven one-factors.

#### Definition

**Seed**: a set of seven one-factors  $\{F_1, \ldots, F_7\}$  so that there exist  $0 \le a < b \le 8$  such that

$$\{\{a,b,i\}: 0\leq i\leq 8, i\neq a,b\}\subset \bigcup_{j=1}^7 F_j.$$

Every one-factorization contains exactly  $\binom{9}{2} = 36$  seeds.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ● ④ ● ●

Classification of seeds

We start by classifying the seeds up to isomorphism:

イロン 不聞と 不同と 不同と

Classification of seeds

We start by classifying the seeds up to isomorphism:

In a one-factorization:

First one-factor (up to isomorphism):

 $\big\{\{0,1,2\},\{3,4,5\},\{6,7,8\}\big\}$ 

Classification of seeds

We start by classifying the seeds up to isomorphism:

In a one-factorization:

First one-factor (up to isomorphism):

$$\big\{\{0,1,2\},\{3,4,5\},\{6,7,8\}\big\}$$

Second one-factor (up to isomorphism):

$$\{\{0, 1, 3\}, \{2, , 8\}, \}$$

Classification of seeds

We start by classifying the seeds up to isomorphism:

In a one-factorization:

First one-factor (up to isomorphism):

$$\big\{\{0,1,2\},\{3,4,5\},\{6,7,8\}\big\}$$

Second one-factor (up to isomorphism):

 $\{\{0, 1, 3\}, \{2, 4, 8\}, \{5, 6, 7\}\}$  (1st choice)

 $\left\{\{0,1,3\},\{2,6,8\},\{4,5,7\}\right\}$  (2nd choice)

Classification of seeds

We start by classifying the seeds up to isomorphism:

A backtrack search, adding one-factors that contain an edge of the form  $\{0, 1, i\}$  one at a time and carrying out isomorph rejection.

The *nauty* library by McKay is used to handle the  $G(\mathcal{F})$  graphs.

| Table: Number of partial seeds     |   |   |    |    |     |     |     |
|------------------------------------|---|---|----|----|-----|-----|-----|
| # of one-factors in a partial seed | 1 | 2 | 3  | 4  | 5   | 6   | 7   |
| # of partial seeds                 | 1 | 2 | 11 | 45 | 156 | 277 | 208 |

Classification of seeds

We start by classifying the seeds up to isomorphism:

A backtrack search, adding one-factors that contain an edge of the form  $\{0, 1, i\}$  one at a time and carrying out isomorph rejection.

The *nauty* library by McKay is used to handle the  $G(\mathcal{F})$  graphs.

| Table: Number of partial seeds     |   |   |    |    |     |     |     |
|------------------------------------|---|---|----|----|-----|-----|-----|
| # of one-factors in a partial seed | 1 | 2 | 3  | 4  | 5   | 6   | 7   |
| # of partial seeds                 | 1 | 2 | 11 | 45 | 156 | 277 | 208 |

There are 208 non-isomorphic seeds.

Extending the seeds

• By extending each classified seed in all possible ways, we can visit every isomorphism class of one-factorizations.

Extending the seeds

- By extending each classified seed in all possible ways, we can visit every isomorphism class of one-factorizations.
- The problem of finding all one-factorizations that contain a given seed is an instance of the **exact cover problem**:

Given a finite set U and a collection C of subsets of U, find all partitions of U consisting of sets in C.

(人間) トイヨト イヨト

Extending the seeds

- By extending each classified seed in all possible ways, we can visit every isomorphism class of one-factorizations.
- The problem of finding all one-factorizations that contain a given seed is an instance of the **exact cover problem**:

Given a finite set U and a collection C of subsets of U, find all partitions of U consisting of sets in C.

- U = the remaining uncovered edges of  $K_9^3$
- C = the one-factors of  $K_9^3$

Extending the seeds

- By extending each classified seed in all possible ways, we can visit every isomorphism class of one-factorizations.
- The problem of finding all one-factorizations that contain a given seed is an instance of the **exact cover problem**:

Given a finite set U and a collection C of subsets of U, find all partitions of U consisting of sets in C.

- U = the remaining uncovered edges of  $K_9^3$
- C = the one-factors of  $K_9^3$
- The *libexact* library by Kaski and Pottonen is used to solve the exact cover instances.

Extending the seeds

- By extending each classified seed in all possible ways, we can visit every isomorphism class of one-factorizations.
- The problem of finding all one-factorizations that contain a given seed is an instance of the **exact cover problem**:

Given a finite set U and a collection C of subsets of U, find all partitions of U consisting of sets in C.

- U = the remaining uncovered edges of  $K_9^3$
- C = the one-factors of  $K_9^3$
- The *libexact* library by Kaski and Pottonen is used to solve the exact cover instances.

The instances of finding one-factorizations from the given seeds lead to a total of 8 185 376 solutions.

Mahdad Khatirinejad (Aalto)

One-Factorizations of  $K_0^3$ 

Isomorph rejection

Methods available:

....

- (1) Recorded objects
- (2) Canonical augmentation (by McKay, 1998)

イロト イポト イヨト イヨト

Isomorph rejection

Methods available:

....

- (1) Recorded objects
- (2) Canonical augmentation (by McKay, 1998)

イロト イポト イヨト イヨト

Isomorph rejection

Methods available:

....

```
(1) Recorded objects
```

(2) Canonical augmentation (by McKay, 1998)

For isomorph-free exhaustive generation apply the following tests to a completed one-factorization  $\mathcal{F}$ :

If  $\mathcal F$  satisfies both tests, we accept  $\mathcal F$ , otherwise we reject  $\mathcal F$ .

Isomorph rejection

Methods available:

....

```
(1) Recorded objects
```

(2) Canonical augmentation (by McKay, 1998)

For isomorph-free exhaustive generation apply the following tests to a completed one-factorization  $\mathcal{F}$ :

(i) If  $\mathcal{F}$  is obtained by extending a seed  $\mathcal{S}$ , check whether  $\mathcal{F}$  is the (lexicographic) minimum of its  $\operatorname{Aut}(\mathcal{S})$ -orbit.

If  ${\mathcal F}$  satisfies both tests, we accept  ${\mathcal F}$  , otherwise we reject  ${\mathcal F}.$ 

Isomorph rejection

Methods available:

....

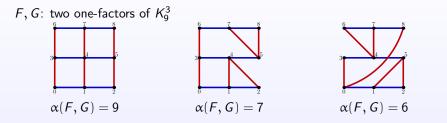
```
(1) Recorded objects
```

(2) Canonical augmentation (by McKay, 1998)

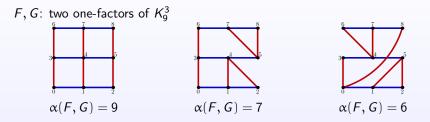
For isomorph-free exhaustive generation apply the following tests to a completed one-factorization  $\mathcal{F}$ :

- (i) If  $\mathcal{F}$  is obtained by extending a seed  $\mathcal{S}$ , check whether  $\mathcal{F}$  is the (lexicographic) minimum of its  $\operatorname{Aut}(\mathcal{S})$ -orbit.
- (ii) Identify a canonical  ${\rm Aut}(\mathcal{F})\text{-orbit}$  of seeds contained by  $\mathcal{F},$  and then check whether the seed from which  $\mathcal{F}$  was extended is in the canonical orbit.
- If  ${\mathcal F}$  satisfies both tests, we accept  ${\mathcal F}$  , otherwise we reject  ${\mathcal F}.$

Speeding up the test



Speeding up the test

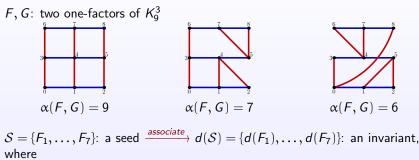


 $S = \{F_1, \dots, F_7\}$ : a seed  $\xrightarrow{associate} d(S) = \{d(F_1), \dots, d(F_7)\}$ : an invariant, where

$$d(F_j) = \sum_{i \neq j} \alpha(F_i, F_j),$$

Mahdad Khatirinejad (Aalto)

Speeding up the test



$$d(F_j) = \sum_{i \neq j} \alpha(F_i, F_j),$$

#### Speed up:

The canonical  $Aut(\mathcal{F})$ -orbit of seeds in (ii) is required to have the lexicographically smallest invariant  $d(\mathcal{S})$ .

Mahdad Khatirinejad (Aalto)

13 April 10 11 / 15

・ロト ・日子・ ・ ヨト

Main result

#### There are exactly 103 000 isomorphism classes of one-factorizations of $K_9^3$ .

#### Orders of the automorphism groups

イロト イヨト イヨト イヨト

| $ \operatorname{Aut}(\mathcal{F}) $ | #      | $ \operatorname{Aut}(\mathcal{F}) $ | # |
|-------------------------------------|--------|-------------------------------------|---|
| 1                                   | 99 453 | 16                                  | 2 |
| 2                                   | 3 151  | 18                                  | 3 |
| 3                                   | 151    | 24                                  | 5 |
| 4                                   | 111    | 36                                  | 1 |
| 6                                   | 84     | 42                                  | 1 |
| 7                                   | 2      | 54                                  | 2 |
| 8                                   | 10     | 56                                  | 1 |
| 9                                   | 1      | 336                                 | 1 |
| 12                                  | 17     | 432                                 | 1 |
| 14                                  | 2      | 1 512                               | 1 |

Validating the classification

During the main search, we record

- (i)  $|Aut(\mathcal{S}_i)|$ : for each seed  $\mathcal{S}_i$ ,
- (ii)  $M_i$ : the total number of one-factorizations found by the exact cover algorithm as extensions of  $S_i$ , and
- (iii)  $|Aut(\mathcal{F}_j)|$ : for each isomorphism class  $\mathcal{F}_j$  of one-factorizations.

Validating the classification

During the main search, we record

- (i)  $|Aut(\mathcal{S}_i)|$ : for each seed  $\mathcal{S}_i$ ,
- (ii)  $M_i$ : the total number of one-factorizations found by the exact cover algorithm as extensions of  $S_i$ , and
- (iii)  $|Aut(\mathcal{F}_j)|$ : for each isomorphism class  $\mathcal{F}_j$  of one-factorizations.

By the orbit-stabilizer theorem, the total # of one-factorizations of  $K_9^3$ :

$$\frac{1}{\binom{9}{2}}\sum_{i=1}^{208}\frac{9!\cdot M_i}{|\operatorname{Aut}(\mathcal{S}_i)|} = \sum_{i=1}^{103\,000}\frac{9!}{|\operatorname{Aut}(\mathcal{F}_i)|}$$

Validating the classification

During the main search, we record

- (i)  $|Aut(\mathcal{S}_i)|$ : for each seed  $\mathcal{S}_i$ ,
- (ii)  $M_i$ : the total number of one-factorizations found by the exact cover algorithm as extensions of  $S_i$ , and
- (iii)  $|Aut(\mathcal{F}_j)|$ : for each isomorphism class  $\mathcal{F}_j$  of one-factorizations.

By the orbit-stabilizer theorem, the total # of one-factorizations of  $K_9^3$ :

$$\frac{1}{\binom{9}{2}}\sum_{i=1}^{208}\frac{9!\cdot M_i}{|\operatorname{Aut}(\mathcal{S}_i)|} = \sum_{i=1}^{103\,000}\frac{9!}{|\operatorname{Aut}(\mathcal{F}_i)|}$$

Both the sides evaluate to 36 696 023 040.

Validating the classification of seeds

$$N$$
 partial seeds  $\mathcal{F}_1, \ldots, \mathcal{F}_N$  with  $|\mathcal{F}_i| = m - 1$   
 $\bigwedge N'$  partial seeds  $\mathcal{F}'_1, \ldots, \mathcal{F}'_{N'}$  with  $|\mathcal{F}'_i| = m$ 

 $M_i$  = the number of candidate one-factors when extending  $\mathcal{F}_i$ 

Validating the classification of seeds

イロト イポト イヨト イヨト

N partial seeds 
$$\mathcal{F}_1, \ldots, \mathcal{F}_N$$
 with  $|\mathcal{F}_i| = m - 1$   
 $\bigvee$   $N'$  partial seeds  $\mathcal{F}'_1, \ldots, \mathcal{F}'_{N'}$  with  $|\mathcal{F}'_i| = m$   
 $M_i$  = the number of candidate one-factors when extending  $\mathcal{F}_i$ 

The total number of partial seeds of size m (by the orbit-stabilizer thm):

$$\frac{1}{m}\sum_{i=1}^{N}\frac{7!\cdot M_i}{|\operatorname{Aut}(\mathcal{F}_i)|}=\sum_{i=1}^{N'}\frac{7!}{|\operatorname{Aut}(\mathcal{F}'_i)|}.$$

Validating the classification of seeds

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

N partial seeds 
$$\mathcal{F}_1, \ldots, \mathcal{F}_N$$
 with  $|\mathcal{F}_i| = m - 1$   
 $M'$  partial seeds  $\mathcal{F}'_1, \ldots, \mathcal{F}'_{N'}$  with  $|\mathcal{F}'_i| = m$   
 $M_i$  = the number of candidate one-factors when extending  $\mathcal{F}_i$ 

The total number of partial seeds of size m (by the orbit-stabilizer thm):

$$\frac{1}{m}\sum_{i=1}^{N}\frac{7!\cdot M_i}{|\operatorname{Aut}(\mathcal{F}_i)|}=\sum_{i=1}^{N'}\frac{7!}{|\operatorname{Aut}(\mathcal{F}'_i)|}.$$

For m = 1, ..., 7 both sides evaluate to 70, 1890, 25410, 182910, 701820, 1323420, and 942900, respectively.