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Abstract

The Hamming graph Hk(n,m), for n, k ,m integers, 1 ≤ k < n, is the
graph with vertices the mn n-tuples of Rn, where R is a set of size m,
and adjacency defined by two n-tuples being adjacent if they differ in k
coordinate positions. They are the graphs from the Hamming association
scheme. In particular, the n-cube: Qn = H(n, 2) = H1(n, 2) (R = F2).

We examine the p-ary codes, for p any prime, that can be obtained from
incidence and neighbourhood designs from Hk(n,m) and its line graphs.

For the incidence designs we obtain the main parameters, including the
minimum weight and nature of the minimum words, for all m when
k = 1, and for m = 2 when k ≥ 2.
The automorphism groups of the graphs, designs and codes are obtained
for these parameters, and permutation decoding shown to be applicable.
Joint work with W. Fish and E. Mwambene of University of the Western
Cape.
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The general idea

Codes from the row span of incidence matrices of some classes
of graphs share certain useful properties:

Γ = (V ,E ) regular connected graph of valency k , and |V | = N;
G an N × 1

2Nk incidence matrix (vertices by edges) for Γ;
Cp(G ) the code spanned by the rows of G over Fp, for p prime,
might be

[
1

2
Nk ,N, k]p or [

1

2
Nk ,N − 1, k]2,

with minimum vectors the scalar multiples of the rows of G .
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The general idea continued

There is often a gap in the weight enumerator between k and
2(k − 1), the latter arising from the difference of two rows (when
p = 2 the code of the adjacency matrix of the line graph).
See: [KMR10, KRa, KRb]

This gap occurs for the p-ary code of the desarguesian projective
plane PG2(Fq), where q = pt ; also for other designs from
desarguesian geometries PGn,k(Fq).
See [Cho00, LSdV08a, LSdV08b]

But, not always true for non-desarguesian planes: e.g. there are
planes of order 16 that have words in this gap. See [GdRK08].
(This has also shown that there are affine planes of order 16 whose
binary code has words of weight 16 that are not incidence vectors
of lines.)

J. D. Key Linear codes from designs from Hamming graphs



Outline

1 Background and terminology

2 Codes from incidence matrices of graphs

3 Hamming graphs H(n,m)

4 Hamming graphs Hk(n,m)

5 Incidence designs for Hk(n,m)

6 Codes of incidence designs of Hk(n,m)

7 Automorphism groups

8 Codes from adjacency matrices

9 References

J. D. Key Linear codes from designs from Hamming graphs



Graphs, designs and codes terminology

The graphs, Γ = (V ,E ) with vertex set V , N = |V |, and edge set
E , are undirected with no loops.

If x , y ∈ V and x and y are adjacent, x ∼ y , and

[x, y] is the edge they define.

A graph is regular if all the vertices have the same valency k .

An adjacency matrix A = [ai ,j ] of Γ is an N × N matrix
with aij = 1 if vertices vi ∼ vj , and aij = 0 otherwise.

An incidence structure D = (P,B,J ), with point set P, block

set B and incidence J is a t-(v , k , λ) design, if |P| = v ,
every block B ∈ B is incident with precisely k points, and
every t distinct points are together incident with precisely λ
blocks.
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Terminology and definitions continued

The neighbourhood design D(Γ) of a regular graph Γ is

the 1-(N, k , k) symmetric design with points the vertices of Γ
and blocks the sets of neighbours of a vertex, for each vertex,
i.e. an adjacency matrix of Γ is an incidence matrix for D.

An incidence matrix of Γ is an N × |E | matrix B with
bi ,j = 1 if the vertex labelled by i is on the edge labelled by j ,
and bi ,j = 0 otherwise.

If Γ is regular with valency k , then |E | = Nk
2 and the

1-(Nk
2 , k , 2) design with incidence matrix B is called the

incidence design G(Γ) of Γ.

The line graph L(Γ) of Γ = (V ,E ) is the graph with vertex
set E and e and f in E are adjacent in L(Γ) if e and f as
edges of Γ share a vertex in V .
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Terminology and definitions continued

The code CF(D) of the design D over a field F is the
space spanned by the incidence vectors of the blocks over F .

For X ⊆ P, the incidence vector in FP of X is vX .

The code CF(Γ) or Cp(A) of graph Γ over Fp is the row

span of an adjacency matrix A over Fp. So Cp(Γ) = Cp(D(Γ))
if Γ is regular.

If B is an incidence matrix for Γ, Cp(B) denotes the row

span of B over Fp. So Cp(B) = Cp(G(Γ)) if Γ is regular.

If A is an adjacency matrix and B an incidence matrix for Γ,
M is an adjacency matrix for L(Γ), Γ regular of valency k , N
vertices, e edges, then

BBT = A + kIN and BT B = M + 2Ie .
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Coding theory terminology

� A linear code is a subspace of a finite-dimensional vector
space over a finite field. (All codes are linear in this talk.)

� The weight of a vector v , written wt(v), is the number of
non-zero coordinate entries. If a code has smallest non-zero
weight d then the code can correct up to bd−1

2 c errors by
nearest-neighbour decoding.

� A code C is [n, k, d]q if it is over Fq and of length n,
dimension k , and minimum weight d .

� A generator matrix for the code is a k × n matrix made up
of a basis for C .

� The dual code C⊥ is the orthogonal under the standard inner
product (, ), i.e. C⊥ = {v ∈ F n|(v , c) = 0 for all c ∈ C}.
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Coding theory terminology continued

� A check matrix for C is a generator matrix H for C⊥.

� Two linear codes of the same length and over the same field
are isomorphic if they can be obtained from one another by
permuting the coordinate positions.

� An automorphism of a code C is an isomorphism from C to
C .

� Any code is isomorphic to a code with generator matrix in
standard form, i.e. the form [Ik |A]; a check matrix then is
given by [−AT | In−k ]. The first k coordinates are the
information symbols and the last n − k coordinates are the
check symbols.
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Codes from incidence matrices of graphs

Result

Γ = (V ,E ) is a graph, G an incidence matrix, G the incidence
design, Cp(G ) the row-span of G over Fp.

1 If Γ is connected then dim(C2(G )) = |V | − 1.

2 If Γ is connected and has a closed path of odd length ≥ 3,
then dim(Cp(G )) = |V | for p odd.

3 If [P,Q,R, S ] is a closed path in Γ, then for any prime p,

u = v [P,Q] + v [R,S] − v [P,S] − v [Q,R] ∈ Cp(G )⊥.

4 If Γ is regular, Aut(Γ) = Aut(G).
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Outline proof of 1 and 2

(From [KRb])
That dim(Cp(G )) ≥ |V | − 1 is folklore and easy to prove.
Clearly there is equality for p = 2.
For p odd, let w =

∑
ai ri = 0 be a sum of multiples of the rows ri

of G , where ri corresponds to the vertex i .
If [i , j ] is an edge then ai = −aj . Taking a closed path (i0, i1, . . . im)
of odd length, so ai0 = −ai1 = . . . = aim = −ai0 , and thus ai0 = 0.
Since the graph is connected, we thus get ai = 0 for all i .

Proof of (3) immediate, and of (4) quite direct.
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Hamming graphs H(n, m)

The Hamming graph H(n,m), for n,m integers, is the graph with

vertices the mn n-tuples of Rn, (where R is a set of size m), and
adjacency

x ∼ y if d(x , y) = 1

Valency is (m − 1)n;

Number of edges is 1
2mn(m − 1)n.

Edges are [x , y ] where d(x , y) = 1, or [x , x + e] where
x , e ∈ Rn and wt(e) = 1 if we take R to be a ring;

Aut(H(n,m)) = Sm o Sn (see [BCN89]), where Sn is the
symmetric group on the n coordinate positions of Rn acting
on the n-tuples, and Sm acts on the elements of R.
By Whitney [Whi32],
Aut(L(H(n,m))) = Aut(H(n,m)) = Sm o Sn.

For convenience, take R to be a commutative ring.
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Incidence and adjacency designs of H(n, m)

Dn(m) is the 1-(mn, (m − 1)n, (m − 1)n) symmetric
neighbourhood design with blocks

x̄ = {y | y ∈ Rn, d(x , y) = 1} = {x + e | wt(e) = 1},

for x ∈ Rn if R is a ring.

Gn(m) is an mn × 1
2mn(m − 1)n incidence matrix for H(n,m)

and Gn(m) the incidence design, with blocks

x = {[x , y ] | d(y , y) = 1} = {[x , x + e] | e ∈ Rn,wt(e) = 1},

for x ∈ Rn if R is a ring.

Gn(m) is a 1-(1
2mn(m − 1)n, (m − 1)n, 2) design.
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Hamming graphs Hk(n, m)

The Hamming graphs Hk(n,m) , where k , n,m ≥ 1 are integers:

vertex set Rn;

x ∼ y if d(x , y) = k, so [x , x + e] where wt(e) = k;

valency is (m − 1)k
(n
k

)
;

G k
n (m) is an mn × 1

2mn(m − 1)k
(n
k

)
incidence matrix ;

Gk
n(m) is the 1-(1

2mn(m − 1)k
(n
k

)
,
(n
k

)
, 2) incidence design;

Dk
n(m) is the 1-(mn, (m − 1)k

(n
k

)
, (m − 1)k

(n
k

)
)

neighbourhood design, and is symmetric.

(H1(n,m) = H(n,m))
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Blocks of the designs from Hk(n, m)

The block of the design Dk
n(m) defined by x ∈ Rn is x̄k , where

x̄k = {y | y ∈ Rn, wt(x − y) = k} = {x + e | wt(e) = k}.

Note that Dk
n(2) = Dn−k

n (2).

The block of the design Gk
n(m) defined by x ∈ Rn is xk , where

xk = {[x , x + e] | e ∈ Vn,wt(e) = k}.

(So x̄1 = x̄ and x1 = x .)
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Incidence matrix for H(n, m)

An incidence matrix Gn(m) for H(n,m):

2666666664

Gn−1(m) 0 0 0 · · · I I I · · · 0 0 0
0 Gn−1(m) 0 0 · · · I 0 0 · · · 0 0 0
0 0 Gn−1(m) 0 · · · 0 I 0 · · · 0 0 0
0 0 0 Gn−1(m) · · · 0 0 I · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 Gn−1(m) 0 0 0 · · · 0 I I

3777777775
,

where I = Imn−1 and there are m − 1 of them in each of the m sets
Ri of rows.
There are

(m+1
2

)
column blocks.

There are m column blocks Ci for which the only entry is Gn−1,
and these are the first m column blocks, C1, . . . ,Cm.
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Incidence matrices for H(n, 2) and H(n, 3)

For example, for m = 2 and 3,

Gn(2) =

[
Gn−1(2) 0 I

0 Gn−1(2) I

]
,

Gn(3) =

 Gn−1(3) 0 0 I I 0
0 Gn−1(3) 0 I 0 I
0 0 Gn−1(3) 0 I I

 ,
where I = I2n−1 in Gn(2) and I = I3n−1 in Gn(3).
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Incidence matrix for Hk(n, 2)

For G k
n = G k

n (2), a 2n × 2n−1
(n
k

)
incidence matrix for Hk(n, 2),

G k
n =

 G k
n−1

0
0

0 A C 0
A 0 0 C

0
0

G k
n−1

B 0 D 0
0 B 0 D

 ,
where

A,B are 2n−2 × 2n−1
(n−2
k−2

)
,
(n−2
k−2

)
entries 1 in each row,

C ,D are 2n−2 × 2n−1
(n−2
k−1

)
,
(n−2
k−1

)
entries 1 in each row,

A,B,C ,D have precisely one entry 1 in each column.
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Incidence matrix for Hk(n, 2), k even

For k even, Hk(n, 2) is not connected. Starting with n = 2, list the
rows with the even-weight vectors for the first 2n−1 rows, R1, and
the odd weight vectors for the second set, R2.
Obtain a 2n × 2n−1

(n
k

)
incidence matrix G k

n for Hk(n, 2) for n ≥ 3,
each row of weight

(n
k

)
, that can take the form

G k
n =

[
G k

n−1 G k−1
n−1 0 0

0 0 G k
n−1 G k−1

n−1

]
,

where

G k
n−1 is 2n−1 × 2n−2

(n−1
k

)
with each row of weight

(n−1
k

)
;

G k−1
n−1 is 2n−1 × 2n−2

(n−1
k−1

)
with each row of weight

(n−1
k−1

)
.
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Incidence matrix G 2
3 (2) for H2(3, 2)

E.g., n = 3, k = 2:

G 2
3 (2) =

[
G 2

2 (2) G2(2) 0 0

0 0 G 2
2 (2) G2(2)

]

=



1 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1


,

the rows labelled by (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) for the
even-weight vectors, followed by (0, 0, 1), (1, 1, 1), (1, 0, 0), (0, 1, 0)
for the odd.
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Words of weight 4 in Cp(G k
n (m))⊥

From Result 1, with Γ = Hk(n,m):
for n,m ≥ 2, n > k, all primes p, Cp(G k

n (m))⊥ contains the
weight-4 word

v [x ,x+e] − v [x ,x+f ] − v [x+e+f ,x+e] + v [x+e+f ,x+f ],

where x ∈ Rn, wt(e) = wt(f ) = k , e 6= f .
Cp(G k

n (m))⊥ has minimum weight 4 for p odd, any m, and for
p = 2 = m;
C k

2 (Gn(m))⊥ has minimum weight 3 for m ≥ 3.
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Codes of incidence matrices Gn(m) of H(n, m)

Gn(m) is an mn × 1
2mn(m − 1)n incidence matrix for H(n,m).

Theorem ([FKMc])

For n ≥ 1, m ≥ 3,
C2(Gn(m)) = [1

2mn(m − 1)n,mn − 1, (m − 1)n]2;
Cp(Gn(m)) = [1

2mn(m − 1)n,mn, (m − 1)n]p for p odd.

For m = 2, p any prime, Cp(Gn(2)) = [2n−1n, 2n − 1, n]p.

For n ≥ 2, all p and m ≥ 3, and for n ≥ 3 and m = 2, the
minimum words are the non-zero scalar multiples of the rows
of Gn(m).

For n ≥ 2, C2(Gn(m))⊥ has minimum weight 3 for m ≥ 3;
Cp(Gn(m))⊥ has minimum weight 4 for p odd, any m, and for
p = 2 = m.
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Codes of incidence matrices G k
n (2) of Hk(n, 2)

Taking m = 2, G k
n (2) an incidence matrix for Hk(n, 2),

Theorem

For n ≥ 4, k ≥ 2,

1 for k odd,
Cp(G k

n (2)) = [2n−1
(n
k

)
, 2n − 1,

(n
k

)
]p for all p,

2 for k even,
C2(G k

n (2)) = [2n−1
(n
k

)
, 2n − 2,

(n
k

)
]2;

Cp(G k
n (2)) = [2n−1

(n
k

)
, 2n,

(n
k

)
]p for p odd.

The minimum words are the scalar multiples of the rows of G k
n (2).
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Codes from adjacency matrices of line graphs

Γ = (V ,E ), D(Γ) its neighbourhood design.
[P,Q] ∈ E is a point of the line graph L(Γ) and [P,Q] is a block
of D(L(Γ)):

[P,Q] = {[P,R] | R 6= Q} ∪ {[R,Q] | R 6= P}.

Lemma

Let Γ be a graph and [P,Q,R,S ] a closed path in Γ, p an odd
prime. Then

v [P,Q] + v [R,S] − v [P,S] − v [Q,R] ∈ Cp(L(Γ)).

Proof:

v [P,Q]+v [R,S]−v [P,S]−v [Q,R] = −2(v [P,Q]+v [R,S]−v [P,S]−v [Q,R]),

�
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Binary codes of line graphs

So codes of adjacency matrices of line graphs (of graphs with
closed paths of length 4) over Fp for p odd have minimum weight
at most 4, and are not of much interest.

Recall:
if G is an incidence matrix for Γ, M an adjacency matrix for L(Γ)

then GT G = M + 2Ie .

So C2(M) ⊆ C2(G ) , and is spanned by the differences of pairs of
rows of G .
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C2(L(H(n, m))

Mn(m) an adjacency matrix for L(H(n,m)), Gn(m) an incidence
matrix for H(n,m), En = 〈ri − rj | i 6= j , ri , rj , rows of Gn(m)〉,

Result ([FKMb, FKMc])

For n ≥ 2, C2(Mn(2)) = En, and

C2(Mn(2)) = [2n−1n, 2n − 2, 2(n − 1)]2.

For n ≥ 4 the minimum words are the rows of Mn(2), i.e. the
differences of rows of Gn(2).

For n ≥ 2 and for m odd, C2(Mn(m)) = C2(Gn(m)), and

C2(Mn(m)) = [
1

2
mn(m − 1)n,mn − 1, (m − 1)n]2

The minimum words are the the rows of Gn(m).
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Weight-4 words in the dual

Note that the set of supports of the words of weight 4 in the dual
code form the blocks of a 1-design, and the way these meet a word
in the code can be used to obtain the minimum weight and the
nature of the minimum-weight vectors.
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Automorphism groups

How do the automorphism groups of

the graphs (Γ),

the incidence designs (G),

the neighbourhood designs (D),

and the various codes (C )

fit together?
Clearly

Aut(Γ) ⊆ Aut(D) ⊆ Aut(C (D))

and
Aut(Γ) ⊆ Aut(G) ⊆ Aut(C (G)).

From Result 1, for Γ regular, Aut(Γ) = Aut(G).
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Automorphism Groups for H(n, m)

From [BCN89],
Aut(H(n,m)) ∼= Sm o Sn, or T o Sn for H(n, 2),
where T is the translation group on Rn.

If An is an adjacency matrix for H(n,m), A∗n = An + I , then

Dn(m) is 1-(mn, (m − 1)n, (m − 1)n) design with incidence
matrix An and blocks

x̄ = {y | y ∈ Rn,d(x , y) = 1},

for each x ∈ Rn.

Dn(m)∗ is 1-(mn, (m − 1)n + 1, (m − 1)n + 1) design with
with incidence matrix A∗n and blocks

x̄∗ = {y | y ∈ Rn, d(x , y) = 1} ∪ {x} = x̄ ∪ {x},

for each x ∈ Rn.
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Automorphism Groups for Dn(m) for m > 2

Result ([FKM09a])

For n ≥ 2, m 6= 2,

Aut(Dn(m)) = Aut(Dn(m)∗) = Aut(H(n,m)) ∼= Sm o Sn.

Further, Aut(Dn(m)) acts primitively on the points Rm.
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Automorphism Groups for Hk(n, 2)

Taking m = 2, we write Γk
n = Hk(n, 2), Dk

n = Dk
n(2).

Result ([FKM09b],[FKMd])

For n ≥ 8,

Aut(D1
n) = Aut(D2

n) = Aut(D3
n) = Aut(Γ2

n) = (T ∗o Sn) o S2,
where T ∗ is the group of translations by even-weight vectors
of Fn

2;

Aut(Γ3
n) = Aut(Γ1

n) = T o Sn, where T is the translation
group on Fn

2;

For any n, Aut(D1
n) ⊆ Aut(Dk

n) for all 1 ≤ k < n.

J. D. Key Linear codes from designs from Hamming graphs



Automorphism Groups for Hk(n, 2)

Conjecture

[FKMd] For n ≥ 2k + 2,

1 for any k

Aut(Dk
n) = Aut(D1

n) = (T ∗ o Sn) o S2;

2 for k ≥ 2 even,

Aut(Γk
n) = Aut(D1

n) = (T ∗ o Sn) o S2;

3 for k odd,
Aut(Γk

n) = Aut(Γ1
n) = T o Sn.
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Unfinished proof

Proof: Mostly done for (1) and (2).... loose ends exist!
For (1) need to show that for n ≥ 2k + 2,(

2k

k

)
6=
(

2m

m

)(
n − 2m

k −m

)
,

for any m such that 1 ≤ m ≤ k − 1.
If f (n,m, k) =

(2m
m

)(n−2m
k−m

)
−
(2k

k

)
, by Magma for 2 ≤ k ≤ 100,

and 1 ≤ m ≤ k − 1, f (n,m, k), as a polynomial in n, has no
integral roots ≥ 2k + 2.
For (2), we need to show that(

2t

t

)(
n − 2t

k − t

)
6=
(

k

k/2

)(
n − k

k/2

)
for 1 ≤ t ≤ k , n ≥ 2k + 2, unless t = k/2. Need show that all
roots of the polynomial N(t, n)− N(n) in n are less than 2k + 2,
where N(t, n) =

(2t
t

)(n−2t
k−t

)
, N(n) =

( k
k/2

)(n−k
k/2

)
.
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Some elements of Aut(Dk
n) not in T o Sn

For (3), can show that Aut(Γk
n) < Aut(Dk

n).

Definition

For v ∈ Fn
2, σ ∈ Sn, Aσ(v) denotes the n × n matrix with rows

ri = v + eiσ, for 1 ≤ i ≤ n.

E.g. n = 5, σ = id , v = (1, 1, 0, 0, 0), u = (1, 1, 1, 0, 0):

Aid(v) =


0 1 0 0 0
1 0 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

 and Aid(u) =


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 0
1 1 1 0 1


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Aut(Dk
n) ⊃ Aut(Γk

n) for k odd

Lemma ([FKMd])

For v ∈ Fn
2, σ ∈ Sn:

If v has even weight then Aσ(v) is invertible.

If v has odd weight then Aσ(v) is singular.

If v is even then Aσ(v) ∈ Aut(Dk
n) for all k ≥ 1 and

xAσ(v) = xσ for x even, xAσ(v) = v + xσ for x odd.

If k is odd and v 6= 0, then Aσ(v) 6∈ Aut(Γk
n) for n > 2k, so

that Aut(Γk
n) < Aut(Dk

n).

J. D. Key Linear codes from designs from Hamming graphs



Proof

Proof: Let Vn = Fn
2. If x = (x1, . . . , xn) ∈ Vn, then

xAσ(v) =
∑n

i=1 xi (v + eiσ) = (
∑n

i=1 xi )v + xσ.
So xAσ(v) = xσ if x has even weight, and
xAσ(v) = v + xσ if x has odd weight.
To show Aσ(v) ∈ Aut(D1

n):
if x and y are on a block of D1

n, then wt(x + y) = 2, and x , y are
both even or both odd.
If x , y are even, then xAσ(v) = xσ and yAσ(v) = yσ, so
xAσ(v) + yAσ(v) = xσ + yσ = (x + y)σ, of weight 2.
If x , y are odd then xAσ(v) = v + xσ and yAσ(v) = v + yσ, so
xAσ(v) + yAσ(v) = (x + y)σ, of weight 2.
This shows that Aσ(v) ∈ Aut(D1

n), and hence in Aut(Dk
n).
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Proof continued

If k is odd, take wt(v) = 2m > 0. Neighbours of 0 are e where
wt(e) = k, and have odd weight k . So 0Aσ(v) = 0 and
eAσ(v) = v + eσ.
If Aσ(v) ∈ Aut(Γk

n) then wt(v + eσ) = k for every e of weight k,
i.e. 2m = 2wt(v ∩ eσ) for every e of weight k , since
wt(v + eσ) = wt(v) + wt(eσ)− 2wt(v ∩ eσ). Thus
m = wt(v ∩ eσ) ≤ k < n/2, so 2m < n. If S = Supp(v), let
T = P \ S, so that |T | = n − 2m > 0. If n − 2m < k then since
every weight-k vector must meet S in m points, then any weight-k
whose support contains T must give k = n − 2m + m so that
k + m = n. This is not possible since k + m < n/2 + n/2. If
n − 2m ≥ k then any weight-k vector in T does not meet S at all,
so we again have a contradiction. Thus Aσ(v) 6∈ Aut(Γk

n). �
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Codes from adjacency matrices for H(n, m)

An an adjacency matrix for H(n,m), A∗n = An + Imn ;

Dn(m) the neighbourhood 1− (mn, (m − 1)n, (m − 1)n)
symmetric design;

Cp(An) = Cp(H(n,m)) = Cp(Dn(m)).

D∗n(m) = 1− (mn, (m − 1)n + 1, (m − 1)n) design from A∗n.

Cp(A∗n) = Cp(D∗n(m)).

For all p, dim(Cp(H(n,m)) is known: see Peeters [Pee02].

Not a great deal else seems to be known about the codes except
for some specific classes (e.g. Qn = H(n, 2).)
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The binary codes of Dn(2) and Dn(2)∗

An an adjacency matrix for H(n, 2), A∗n = An + I2n ,
T the translation group of Fn

2,
T ∗ the group of translations by even-weight vectors of Fn

2.

Result ([KS07, FKMa])

For n odd An is invertible.
For n even C2(An) = [2n, 2n−1, n]2 self-dual code.
For n ≥ 6 even, the minimum words are the rows of An and
Aut(C2(An)) = Aut(Dn(2)) = (T ∗ o Sn) o S2.

For n even An + I2n is invertible.
For n ≥ 5 odd, C2(A∗n) = [2n, 2n−1, n + 1]2 self-dual code, the
minimum words are the rows of A∗n, and
Aut(C2(A∗n)) = T o G , where G ⊆ GLn(F2), G ∼= Sn+1.

J. D. Key Linear codes from designs from Hamming graphs



Automorphism Groups for Dn(2)∗

Aut(Dn(2)∗)[FKMb]

For n ≥ 3, Aut(Dn(2)∗) ∼= T o Sn+1 and is primitive for n even,
imprimitive for n odd;

for n ≥ 5, n odd, Aut(C2(Dn(2)∗)) = Aut(Dn(2)∗).
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The binary codes of Dn(3) and Dn(3)∗

An an adjacency matrix for H(n, 3), A∗n = An + I2n

Dn(3) is a symmetric 1-(3n, 2n, 2n) design from An;
Dn(3)∗ is a symmetric 1-(3n, 2n + 1, 2n + 1) design from A∗n.

Result ([FKM09a])

If n ≥ 4, then

C = C2(Dn(3)) is [3n, 1
2(3n − (−1)n), 2n]2;

C ∗ = C⊥ = C2(Dn(3)∗) is [3n, 1
2(3n + (−1)n), 2n + 1]2;

the minimum words of C are the incidence vectors of the
blocks of Dn(3) so

Aut(C2(Dn(3))) = Aut(Dn(3)) = Aut(H(n, 3)) ∼= S3 o Sn;

C ∩ C⊥ = {0}
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