Algebraic Combinatorics and Applications Universität Bayreuth
Thurnau, April 11-18, 2010

Quantum MDS Codes of Distance Three

Markus Grassl

National University of Singapore

Markus.Grassl@nus.edu.sg Www. codetables.de

Overview

- A brief introduction to quantum codes
- Symplectic codes
- The puncture code of Rains
- Quantum MDS codes
- Constructing QMDS codes of distance three
- An open conjecture

Overview

- A brief introduction to quantum codes
- Symplectic codes
- The puncture code of Rains
- Quantum MDS codes
- Constructing QMDS codes of distance three
- An open conjecture
- solved by Aart Blokhuis during Thursday's lunch break

Quantum Information

Quantum-bit (qubit)

basis states:

$$
" 0 " \hat{=}|0\rangle=\binom{1}{0} \in \mathbb{C}^{2}, \quad " 1 " \hat{=}|1\rangle=\binom{0}{1} \in \mathbb{C}^{2}
$$

general state:

$$
|q\rangle=\alpha|0\rangle+\beta|1\rangle \quad \text { where } \alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
$$

measurement (read-out):

> result " 0 " with probability $|\alpha|^{2}$
> result " 1 " with probability $|\beta|^{2}$

Quantum Information

Quantum register

basis states:

$$
\left|b_{1}\right\rangle \otimes \ldots \otimes\left|b_{n}\right\rangle=:\left|b_{1} \ldots b_{n}\right\rangle=|\boldsymbol{b}\rangle \quad \text { where } b_{i} \in\{0,1\}
$$

general state:

$$
|\psi\rangle=\sum_{\boldsymbol{x} \in\{0,1\}^{n}} c_{\boldsymbol{x}}|x\rangle \quad \text { where } \sum_{\boldsymbol{x} \in\{0,1\}^{n}}\left|c_{\boldsymbol{x}}\right|^{2}=1
$$

\longrightarrow normalized vector in $\left(\mathbb{C}^{2}\right)^{\otimes n} \cong \mathbb{C}^{2^{n}}$

Quantum Error-Correcting Codes

- subspace \mathcal{C} of a complex vector space $\mathcal{H} \cong \mathbb{C}^{N}$ usually: $\mathcal{H} \cong \mathbb{C}^{m} \otimes \mathbb{C}^{m} \otimes \ldots \otimes \mathbb{C}^{m}=:\left(\mathbb{C}^{m}\right)^{\otimes n} \quad$ " n qudits"
- errors: described by linear transformations acting on
- some of the subsystems (local errors)
- many subsystems in the same way (correlated errors)
- notation: $\mathcal{C}=\llbracket n, k, d \rrbracket_{q}$
q^{k}-dimensional subspace \mathcal{C} of $\left(\mathbb{C}^{q}\right)^{\otimes n}$
- minimum distance d :
- detection of errors acting on $d-1$ subsystems
- correction of errors acting on $\lfloor(d-1) / 2\rfloor$ subsystems
- correction of erasures acting on $d-1$ known subsystems

Basic Ideas

partitioning of all words

- combinatorics
- (linear) algebra

- codewords
- - bounded weight errors other errors
orthogonal decomposition

$$
\left(\mathbb{C}^{d}\right)^{\otimes n}=\mathcal{H}_{\mathcal{C}} \oplus \mathcal{H}_{\varepsilon_{1}} \oplus \ldots \oplus \mathcal{H}_{\mathcal{E}_{i}} \oplus \ldots
$$

Quantum Error-Correcting Codes

quantum error-correction is "linear"

If the errors A and B can be corrected, then all errors $\lambda A+\mu B(\lambda, \mu \in \mathbb{C})$ can be corrected.
\Longrightarrow consider only a vector space basis of the errors

Error Basis for Qudits

[A. Ashikhmin \& E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT 47,
pp. 3065-3072 (2001)]

$$
\mathcal{E}=\left\{X_{\alpha} Z_{\beta}: \alpha, \beta \in \mathbb{F}_{q}\right\},
$$

where (you may think of $\mathbb{C}^{q} \cong \mathbb{C}\left[\mathbb{F}_{q}\right]$)

$$
\begin{aligned}
X_{\alpha} & :=\sum_{x \in \mathbb{F}_{q}}|x+\alpha\rangle\langle x| & \text { for } \alpha \in \mathbb{F}_{q} \\
\text { and } \quad Z_{\beta} & :=\sum_{z \in \mathbb{F}_{q}} \omega^{\operatorname{tr}(\beta z)}|z\rangle\langle z| & \text { for } \beta \in \mathbb{F}_{q}\left(\omega:=\omega_{p}=\exp (2 \pi i / p)\right)
\end{aligned}
$$

Stabilizer Codes

common eigenspace of an Abelian subgroup \mathcal{S} of the group \mathcal{G}_{n} with elements

$$
\omega^{\gamma}\left(X_{\alpha_{1}} Z_{\beta_{1}}\right) \otimes\left(X_{\alpha_{2}} Z_{\beta_{2}}\right) \otimes \ldots \otimes\left(X_{\alpha_{n}} Z_{\beta_{n}}\right)=: \omega^{\gamma} X_{\alpha} Z_{\beta},
$$

where $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{F}_{q}^{n}, \gamma \in \mathbb{F}_{p}$.
quotient group:

$$
\overline{\mathcal{G}}_{n}:=\mathcal{G}_{n} /\langle\omega I\rangle \cong\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right)^{n} \cong \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}
$$

\mathcal{S} Abelian subgroup

$$
\begin{aligned}
& \Longleftrightarrow(\boldsymbol{\alpha}, \boldsymbol{\beta}) \star\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)=0 \text { for all } \omega^{\gamma}\left(X_{\boldsymbol{\alpha}} Z_{\boldsymbol{\beta}}\right), \omega^{\gamma^{\prime}}\left(X_{\boldsymbol{\alpha}^{\prime}} Z_{\boldsymbol{\beta}^{\prime}}\right) \in \mathcal{S}, \\
& \text { where } \star \text { is a symplectic inner product on } \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} .
\end{aligned}
$$

Stabilizer codes correspond to symplectic codes over $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$.

Symplectic Codes

most general:

additive codes $C \subset \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ that are self-orthogonal with respect to

$$
(\boldsymbol{v}, \boldsymbol{w}) \star\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right):=\operatorname{tr}\left(\boldsymbol{v} \cdot \boldsymbol{w}^{\prime}-\boldsymbol{v}^{\prime} \cdot \boldsymbol{w}\right)=\operatorname{tr}\left(\sum_{i=1}^{n} v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}\right)
$$

in this talk:
\mathbb{F}_{q}-linear codes $C \subset \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ that are self-orthogonal with respect to

$$
(\boldsymbol{v}, \boldsymbol{w}) \star\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right):=\boldsymbol{v} \cdot \boldsymbol{w}^{\prime}-\boldsymbol{v}^{\prime} \cdot \boldsymbol{w}=\sum_{i=1}^{n} v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}
$$

$\mathbb{F}_{q^{2}}$-linear Hermitian codes $C \subset \mathbb{F}_{q^{2}}^{n}$ that are self-orthogonal with respect to

$$
\boldsymbol{x} \star \boldsymbol{y}:=\sum_{i=1}^{n} x_{i}^{q} y_{i}
$$

Symplectic Codes \& Stabilizer Codes

Theorem: (Ashikhmin \& Knill)
Let C be a symplectic code over $\mathbb{F}_{q} \times \mathbb{F}_{q}$ of size q^{n-k} and let $d:=\min \left\{\operatorname{wgt}(\boldsymbol{c}): \boldsymbol{c} \in C^{\star} \backslash C\right\}$.
Then there is a stabilizer code $\mathcal{C}=\llbracket n, k, d \rrbracket_{q}$.

Special cases:

- $C=C_{1}^{\perp} \times C_{2}^{\perp}$ with linear codes C_{1}, C_{2} over $\mathbb{F}_{q}, C_{2}^{\perp} \subset C_{1}$ Calderbank-Shor-Steane (CSS) codes
- $C=C_{1} \times C_{1}$ with a weakly self-dual (Euclidean) linear code $C_{1} \subset C_{1}^{\perp}$ over \mathbb{F}_{q}
- $C=\left\{(\boldsymbol{v}, \boldsymbol{w}): \boldsymbol{v}+\gamma \boldsymbol{w} \in C_{1}\right\}$ where C_{1} is a Hermitian self-orthogonal linear code over $\mathbb{F}_{q^{2}}$ (with some particular $\gamma \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$)

Quantum Singleton Bound

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827-1832 (1999)]
general bound on the minimum distance of $\mathcal{C}=\llbracket n, k, d \rrbracket_{q}$:

$$
\begin{equation*}
2 d \leq n-k+2 \tag{1}
\end{equation*}
$$

Quantum MDS codes:
quantum codes with equality in (1)

Minimum distance of a stabilizer code:

$$
\begin{equation*}
\mathrm{d}_{\min }(\mathcal{C}):=\min \left\{\operatorname{wgt}(\boldsymbol{c}): \boldsymbol{c} \in C^{\star} \backslash C\right\} \geq \mathrm{d}_{\min }\left(C^{\star}\right) \tag{2}
\end{equation*}
$$

where C is the symplectic code corresponding to \mathcal{C}
Note: for QMDS codes we get equality in (2)

Shortening Quantum Codes

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827-1832 (1999)]

- shortening of classical codes: $C=[n, k, d] \rightarrow C_{s}=[n-1, k-1, d]$
- for stabilizer codes:
shortening $C^{\star} \rightarrow C_{s}^{\star} \Longrightarrow$ puncturing $C \rightarrow C_{p} \Longrightarrow C_{p} \not \subset\left(C_{p}\right)^{\star}=C_{s}^{\star}$

General problem:
How to turn a non-symplectic code into a symplectic one?

Basic idea:

$$
\sum_{i=1}^{n}\left(v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}\right) \quad \neq 0 \quad \text { for some }(\boldsymbol{v}, \boldsymbol{w}),\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right) \in C
$$

Shortening Quantum Codes

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827-1832 (1999)]

- shortening of classical codes: $C=[n, k, d] \rightarrow C_{s}=[n-1, k-1, d]$
- for stabilizer codes:
shortening $C^{\star} \rightarrow C_{s}^{\star} \Longrightarrow$ puncturing $C \rightarrow C_{p} \Longrightarrow C_{p} \not \subset\left(C_{p}\right)^{\star}=C_{s}^{\star}$

General problem:
How to turn a non-symplectic code into a symplectic one?

Basic idea: find $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}$ with

$$
\sum_{i=1}^{n}\left(v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}\right) \alpha_{i}=0 \quad \text { for all }(\boldsymbol{v}, \boldsymbol{w}),\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right) \in C
$$

Shortening Quantum Codes

puncture code of an \mathbb{F}_{q}-linear code C over $\mathbb{F}_{q} \times \mathbb{F}_{q}$:

$$
P(C):=\left\langle\left\{\boldsymbol{c}, \boldsymbol{c}^{\prime}\right\}: \boldsymbol{c}, \boldsymbol{c}^{\prime} \in C\right\rangle^{\perp} \subseteq \mathbb{F}_{q}^{n}
$$

with the vector valued bilinear form

$$
\begin{gathered}
\left\{(\boldsymbol{v}, \boldsymbol{w}),\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}\right)\right\}:=\left(v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}\right)_{i=1}^{n} \in \mathbb{F}_{q}^{n} \\
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in P(C) \\
\Longleftrightarrow \sum_{i=1}^{n}\left(v_{i} w_{i}^{\prime}-v_{i}^{\prime} w_{i}\right) \alpha_{i}=0 \quad \text { for all }(\boldsymbol{v}, \boldsymbol{w}),\left(\boldsymbol{v}^{\prime}, \boldsymbol{w}^{\prime}\right) \in C \\
\Longrightarrow \text { symplectic code } \widetilde{C}:=\left\{\left(\boldsymbol{v},\left(\alpha_{i} w_{i}\right)_{i=1}^{n}\right):(\boldsymbol{v}, \boldsymbol{w}) \in C\right\}
\end{gathered}
$$

Shortening Quantum Codes

$\boldsymbol{\alpha} \in P(C)$ with wgt $\boldsymbol{\alpha}=r:$

- delete the positions with $\alpha_{i}=0$
- \tilde{C}_{p} is still a symplectic code
\Longrightarrow code \tilde{C} of length $\tilde{n}=r$ with $\tilde{C} \subseteq \tilde{C}^{\star}$

Theorem: (Rains)
Let C be a code over $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ with $C^{\star}=\left(n, q^{n+k}, d\right)$.
If $\boldsymbol{\alpha} \in P(C)$ with $\operatorname{wgt}(\boldsymbol{\alpha})=r$, then there is a stabilizer code
$\mathcal{C}=\llbracket r, \tilde{k} \geq r-(n-k), \tilde{d} \geq d \rrbracket_{q}$.
In particular:

$$
\mathcal{C}=\llbracket n, k, d \rrbracket_{q} \xrightarrow{\alpha} \tilde{\mathcal{C}}=\llbracket r, \tilde{k} \geq r-(n-k), \tilde{d} \geq d \rrbracket_{q}
$$

The Easy Case: CSS-like Construction

[Rötteler, Grassl, and Beth, ISIT 2004]

- start with a cyclic (constacyclic) MDS code C_{1} over \mathbb{F}_{q} of length $q+1$
- in general, $C_{1}^{\perp} \not \subset C_{1}$
- compute $P(C)$ for $C=C_{1}^{\perp} \times C_{1}^{\perp}$:

$$
P(C)=\left\langle\left(c_{i} d_{i}\right)_{i=1}^{n}: \boldsymbol{c}, \boldsymbol{d} \in C_{1}^{\perp}\right\rangle^{\perp}
$$

- α^{i}, α^{j} roots of the generator polynomial of C_{1}
$\Longrightarrow \alpha^{i+j}$ is a root of the generator polynomial of $P(C)$
- $P(C)$ is also a cyclic (constacyclic) MDS code which contains words of "all" weights

Quantum MDS codes $\mathcal{C}=\llbracket n, n-2 d+2, d \rrbracket_{q}$ exist for all $3 \leq n \leq q+1$ and $1 \leq d \leq n / 2+1$.

The Harder Case: Hermitian-like Construction

- start with a cyclic (constacyclic) MDS code C over $\mathbb{F}_{q^{2}}$ of length $q^{2}+1$
- in general, C is not a Hermitian self-orthogonal code
- $P(C)=\left\langle\left(c_{i} d_{i}^{q}\right)_{i=1}^{n}: \boldsymbol{c}, \boldsymbol{d} \in C\right\rangle^{\perp} \cap \mathbb{F}_{q}^{n}$
$=\left\langle\left(c_{i} d_{i}^{q}+c_{i}^{q} d_{i}\right)_{i=1}^{n}: \boldsymbol{c}, \boldsymbol{d} \in C\right\rangle^{\perp}$
- C is the dual of a code whose generator polynomial has roots α^{i}, α^{j} $\Longrightarrow \alpha^{i+q j}$ is a root of the generator polynomial of $P(C)$
- $P(C)$ is also a cyclic (constacyclic) code, but in general no MDS code
- known so far [Beth, Grassl, Rötteler], [Klappenecker et al.]
- QMDS codes exist for some $n>q+1$ and $d \leq q+1$, including $q^{2}-1$, $q^{2}, q^{2}+1$
- some other QMDS codes, e. g., derived from Reed-Muller codes

QMDS of Distance Three

q^{2}-ary simplex code $C=\left[q^{2}+1,2, q^{2}\right]_{q^{2}}$ generated by

$$
G=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & \ldots & 1 \\
0 & 1 & 1 & \omega & \omega^{2} & \ldots & \omega^{q^{2}-2}
\end{array}\right)=\binom{\boldsymbol{g}_{0}}{\boldsymbol{g}_{1}},
$$

where ω is a primitive element of $G F\left(q^{2}\right)$

Considered as \mathbb{F}_{q}-linear code generated by

$$
\left\{\boldsymbol{g}_{0}, \boldsymbol{g}_{0}^{\prime}=\alpha \boldsymbol{g}_{0}, \boldsymbol{g}_{1}, \boldsymbol{g}_{1}^{\prime}=\alpha \boldsymbol{g}_{1}\right\}
$$

where $\alpha \in G F\left(q^{2}\right) \backslash G F(q)$

The Dual of the Puncture Code

$$
\begin{array}{rlr}
P(C)^{\perp} & =\left\langle\boldsymbol{g}_{0}^{q+1}, \boldsymbol{g}_{0} \circ \boldsymbol{g}_{\mathbf{1}}^{q}+\boldsymbol{g}_{0}^{q} \circ \boldsymbol{g}_{1}, \boldsymbol{g}_{0} \circ \alpha^{q} \boldsymbol{g}_{1}^{q}+\boldsymbol{g}_{0}^{q} \circ \alpha \boldsymbol{g}_{1}, \boldsymbol{g}_{1}^{q+1}\right\rangle \\
& =\left\langle\boldsymbol{f}_{0}, \quad \boldsymbol{f}_{1},\right. & \left.\boldsymbol{f}_{3}\right\rangle,
\end{array}
$$

using $\boldsymbol{v} \circ \boldsymbol{w}=\left(v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{n} w_{n}\right)$ and $\boldsymbol{v}^{m}=\left(v_{1}^{m}, v_{2}^{m}, \ldots, v_{n}^{m}\right)$
We have

$$
\begin{aligned}
& f_{0}=z^{q+1} \\
& f_{1}=x^{q} z+x z^{q}=\operatorname{homogen}_{z}\left(x+x^{q}\right) \quad=\operatorname{homogen}_{z}(\operatorname{tr}(x)) \\
& f_{2}=\alpha^{q} x^{q} z+\alpha x z^{q}=\operatorname{homogen}_{z}\left(\alpha x+\alpha^{q} x^{q}\right)=\operatorname{homogen}_{z}(\operatorname{tr}(\alpha x)) \\
& f_{3}=x^{q+1}
\end{aligned}
$$

Choosing $\alpha \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ with $-\alpha^{2}=\beta_{1} \alpha+1$ for some $\beta_{1} \in \mathbb{F}_{q}$ yields

$$
f_{1}^{2}+\beta_{1} f_{1} f_{2}+f_{2}^{2}=\left(4-\beta_{1}^{2}\right) f_{0} f_{3}
$$

Ovoid Code

Lemma: The dual of the puncture code is an ovoid code, i.e.

$$
P(C)^{\perp}=\left[q^{2}+1,4, q^{2}-q\right]_{q} .
$$

(see, e. g., Example TF3 in [Calderbank \& Kantor, 1986])

This code is a two-weight code with weights $q^{2}-q$ and q^{2}.

$$
A_{i}= \begin{cases}1 & \text { for } i=0 \\ \left(q^{3}+q\right)(q-1) & \text { for } i=q^{2}-q, \\ \left(q^{2}+1\right)(q-1) & \text { for } i=q^{2}, \\ 0 & \text { else. }\end{cases}
$$

The Dual of the Ovoid Code

Problem: We need the non-zero weights of the puncture code $P(C)$.
The homogenized weight enumerator of $P(C)^{\perp}$ is

$$
W_{P(C)^{\perp}}=X^{q^{2}+1}+\left(q^{3}+q\right)(q-1) X^{q+1} Y^{q^{2}-q}+\left(q^{2}+1\right)(q-1) X Y^{q^{2}}
$$

MacWilliams transformation yields

$$
\begin{aligned}
W_{P(C)}(X, Y) & =q^{-4} W_{P(C)^{\perp}}(X+(q-1) Y, X-Y) \\
& =\sum_{i=0}^{q^{2}+1} B_{i} X^{q^{2}+1-i} Y^{i}
\end{aligned}
$$

Conjecture: For $q>2$, the code $P(C)$ contains words of all weights $w=4, \ldots, q^{2}+1$, i. e., $B_{i}>0$.

Confirmed for the first 50 prime powers as well as for small weights.

Geometric Proof

THANKS to Aart Blokhuis

Main idea: Show that we can find a linear combination of exactly w points of the ovoid that is zero, corresponding to a word of weight w in the dual code.

- Choose 5 points Q_{0}, \ldots, Q_{4} of the ovoid \mathcal{O} in a plane $\mathcal{P}($ for $q \geq 4)$.
- Choose 2 points P_{1} and P_{2} of the ovoid outside of the plane.
- Any point in the plane can be expressed as linear combination of exactly 4 points Q_{i}.
- Choose $m=w-4$ other points and consider their sum S.
- If $S \in \mathcal{P}$, use exactly 4 other points Q_{i} to get zero.
- Otherwise, consider the intersection of \mathcal{P} with the line through S and P_{1} (or P_{2} if $S=P_{1}$). Use exactly 3 other points Q_{i} to get zero.

Conclusions

Theorem:

Quantum MDS codes $\llbracket n, n-4,3 \rrbracket_{q}$ exist for all $4 \leq n \leq q^{2}+1$ and prime powers $q>2$.

Extends Ruihu Li \& Zongben Xu, On $\llbracket n, n-4,3 \rrbracket_{q}$ Quantum MDS Codes for odd prime power q, arXiv:0906.2509 using different methods.

Further research:

- Find quantum MDS codes of of length $n>q+1$ and $d>3$.
- For which q, n, d do QMDS codes $\llbracket n, n-2 d+2, d]]_{q}$ exist?
- Characterize $P(C)$ for classes of codes.
- Develop general methods to determine the non-zero coefficients of the weight distribution.

References

[1] A. Ashikhmin and E. Knill, "Nonbinary quantum stabilizer codes," IEEE Transactions on Information Theory 47, pp. 3065-3072 (2001), http://arXiv.org/abs/quant-ph/0005008
[2] M. Grassl, Th. Beth, and M. Rötteler, "On Optimal Quantum Codes," International Journal of Quantum Information 2, pp. 55-64 (2004), http://arXiv.org/abs/quant-ph/0312164
[3] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, "Nonbinary stabilizer codes over finite fields," IEEE Transactions on Information Theory 52, pp. 4892-4914 (2006), http://arXiv.org/abs/quant-ph/0508070
[4] R. Li and Z. Xu, "On $\llbracket n, n-4,3 \rrbracket_{q}$ Quantum MDS Codes for odd prime power q," http://arXiv.org/abs/0906.2509
[5] E. Rains, "Nonbinary Quantum Codes," IEEE Transactions on Information Theory 45, pp. 1827-1832 (1999), http://arXiv.org/abs/quant-ph/9703048
[6] M. Rötteler, M. Grassl, and Th. Beth, "On Quantum MDS Codes," Proceedings 2004 IEEE International Symposium on Information Theory (ISIT 2004), p. 356.

