Trellis Representations for Linear Block Codes

Heide Gluesing-Luerssen

Department of Mathematics University of Kentucky

ALCOMA10

April 2010

(日) (四) (문) (문) (문)

990

What is a Trellis Representation?

$$\mathcal{C} = \mathsf{im} \, egin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \subseteq \mathbb{F}_2^6$$

Code = set of edge-label sequences of all cycles through the graph.

Motivation:

- decoding by (variant of) Viterbi algorithm
- code structure

What is a Trellis Representation?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Basic Notions of Trellis Representations

Definition

A **trellis** is a graph
$$T = (V, E)$$
, where $V = \bigcup_{i=0}^{n} V_i$, $E = \bigcup_{i=0}^{n} E_i$ such that
• $V_0 = V_n$,

•
$$E_i = \{ v \xrightarrow{a} w \mid v \in V_i, w \in V_{i+1}, a \in \mathbb{F} \}$$
 for $i = 0, \dots, n-1$.

Edge-label code

$$\mathcal{C}(T) := \left\{ (c_0, \dots, c_{n-1}) \in \mathbb{F}^n \, \middle| \begin{array}{c} \text{there exists a cycle in } T \\ v_0 \stackrel{c_0}{\longrightarrow} v_1 \stackrel{c_1}{\longrightarrow} \dots \stackrel{c_{n-1}}{\longrightarrow} v_n = v_0 \end{array} \right\}$$

• T represents the code $C \subseteq \mathbb{F}^n$ if C(T) = C.

• T is called **conventional** if $|V_0| = 1$ and **tail-biting** else.

Further Notions

Linear Trellis

- each vertex and edge appears in a cycle,
- V_i is an \mathbb{F} -vector space for all *i* (after suitable labeling),
- The label code

$$\left\{v_0 \xrightarrow{c_0} v_1 \xrightarrow{c_1} \dots \xrightarrow{c_{n-1}} v_n = v_0\right\}$$

is a subspace of
$$V_0 imes \mathbb{F} imes V_1 imes \ldots imes \mathbb{F} imes V_{n-1} imes \mathbb{F}.$$

Throughout this talk: only linear trellises!

Write $(v, a, w) \in V_i \times \mathbb{F} \times V_{i+1}$ for $v \xrightarrow{a} w$. Hence $E_i \subseteq V_i \times \mathbb{F} \times V_{i+1}$.

One-to-One Trellis $\mathcal{C}(T) \stackrel{\text{bijective}}{\longleftrightarrow} \text{ cycles in } T.$

Minimality and Non-Mergeability

Minimal Trellis

There exists no trellis
$$T' = (V', E')$$
 such that $C(T') = C$ and
 $|V'_i| \le |V_i|$ for all i and $|V'_j| < |V_j|$ for some j .

Mergeable Trellis

There exist distinct vertices $v, w \in V_i$ that can be **merged**, that is,

replacing v, w by a single vertex $\hat{v} \in V_i$ and all in- and outgoing edges of v, w accordingly results in a trellis T' satisfying C(T) = C(T').

By linearity: Merging amounts to taking a certain quotient space of V_i .

How to Construct Minimal Trellises?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

How to Construct Minimal Trellises?

Theorem (Forney '88, Muder '88, McEliece '92)

Let T = (V, E) be a <u>conventional</u> trellis of C. Then the following are **equivalent**:

- T is minimal (in the class of conventional trellises),
- T is non-mergeable,
- every conventional trellis T' of C can be merged to T, in particular,

$$|V_i| \le |V'_i|$$
 for all $i = 0, \dots, n-1$,

The minimal conventional trellis of C is unique up to trellis isomorphism.

Forney's Construction:

$$V_{i} := C/C_{i}, \quad E_{i} := \left\{ \left([c]_{i}, c_{i}, [c]_{i+1} \right) \mid c \in C \right\}, \\C_{i} := \left\{ (c_{0}, \dots, c_{n-1}) \in C \mid (c_{0}, \dots, c_{i-1}, 0, \dots, 0) \in C \right\} \\= \left\{ (c_{0}, \dots, c_{n-1}) \in C \mid (0, \dots, 0, c_{i}, \dots, c_{n-1}) \in C \right\}$$

Why Considering Tail-Biting Trellises?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why Considering Tail-Biting Trellises?

(日) (四) (문) (문) (문)

990

Both trellises are minimal.

Example (Dimension 1): $\mathcal{C} = im (1, 2, 0, 1, 1) \subseteq \mathbb{F}_3^5$.

Possible spans: (0, 4], (1, 0], (3, 1], (4, 3].

Example (Dimension 1): $\mathcal{C} = \operatorname{im} (1, 2, 0, 1, 1) \subseteq \mathbb{F}_3^5.$

Possible spans: (0, 4], (1, 0], (3, 1], (4, 3].

Example (Dimension 1): $C = im(1, 2, 0, 1, 1) \subseteq \mathbb{F}_3^5$. Possible spans: (0, 4], (1, 0], (3, 1], (4, 3].

Choose the span (3, 1] and put

$$V_{i} = \left\{ \begin{array}{l} \mathbb{F}_{3}, & \text{if } i \in (3, 1] \\ \{0\}, & \text{else} \end{array} \right\} = \operatorname{im} v_{i}, \text{ where } v_{i} = \left\{ \begin{array}{l} 1, & \text{if } i \in (3, 1] \\ 0, & \text{else} \end{array} \right\}$$
$$E_{i} = \operatorname{im} \left(v_{i}, c_{i}, v_{i+1} \right) = \left\{ \left(\alpha v_{i}, \alpha c_{i}, \alpha v_{i+1} \right) \mid \alpha \in \mathbb{F}_{3} \right\}$$

(日) (문) (문) (문) (문)

9 Q (?

This results in the one-to-one and minimal trellis

Theorem (Kschischang/Sorokine '95)

Let T' = (V', E') and T'' = (V'', E'') be trellises of C' and C''. Define $V_i = V'_i \times V''_i$ $E_i = \left\{ ((v, w), a + b, (\hat{v}, \hat{w})) \mid (v, a, w) \in E'_i, (\hat{v}, b, \hat{w}) \in E''_i \right\}.$ Then T = (V, E) is a trellis of C' + C''. If T' and T'' are one-to-one and $C' \cap C'' = \{0\}$, then T is one-to-one.

Product Trellis

Let C = im G and S be a list of spans for the rows of G. Define

 $T_{G,S}$

as the product of the corresponding 1-dimensional trellises.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Product Trellises

Product trellises

- are linear and one-to-one,
- but may be mergeable and thus not minimal.

Example

$$C = \operatorname{im} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \subseteq \mathbb{F}_{2}^{3}, \quad S = \begin{bmatrix} (0, 2] \\ (1, 0] \end{bmatrix}$$

E.

590

The Minimal Conventional Trellis as a Product Trellis

Theorem (Kschischang/Sorokine '95, McEliece, '96)

There exists a pair (G, S) such that the span list

$$S = [(a_l, b_l], l = 1, \dots, k]$$

satisfies

- $(a_l, b_l]$ is conventional for all $l = 1, \ldots, k$,
- a_1, \ldots, a_k are distinct,
- b_1, \ldots, b_k are distinct.

The corresponding product trellis $T_{G,S}$ is the minimal conventional trellis of C = im G.

The span list ${\mathcal S}$ is uniquely determined by ${\mathcal C}.$

We call G a conventional trellis-oriented generator matrix of C.

(日) (四) (문) (문) (문)

SQC

Characteristic Pair of a Code

 $\mathcal{C} \subseteq \mathbb{F}^n$ be a k-dimensional code with support $\{0, \ldots, n-1\}$.

Theorem (generalized version of Koetter/Vardy, 2003)

There exists a characteristic pair of $\ensuremath{\mathcal{C}}$, that is,

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{F}^{n \times n} \text{ and } \mathcal{T} = \begin{bmatrix} (a_1, b_1] \\ \vdots \\ (a_n, b_n] \end{bmatrix}$$

with the following properties

- im X = C, that is, $\{x_1, \ldots, x_n\}$ forms a generating set of C.
- $(a_l, b_l]$ is a span of x_l for $l = 1, \ldots, n$.
- a_1, \ldots, a_n are distinct and b_1, \ldots, b_n are distinct.
- For all j = 0,..., n − 1 the shifted pair (σ^j(X), σ^j(T)) contains a conventional trellis-oriented generator matrix of σ^j(C).

The span list \mathcal{T} is uniquely determined by \mathcal{C} , the matrix X is not.

Characteristic Pair of a Code

1.

Exam

ple:
$$C = \operatorname{im} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
. Then

$$X = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}, \quad T = \begin{bmatrix} (0, 4] \\ (1, 5] \\ (3, 0] \\ (2, 1] \\ (4, 2] \\ (5, 3] \end{bmatrix}$$

500

KV-Trellises

Definition

A **KV-trellis** of C is a product trellis $T_{G,S}$, where

- $G \in \mathbb{F}^{k \times n}$ is a full row rank submatrix of a characteristic matrix of \mathcal{C} ,
- $\bullet \ \mathcal{S}$ is the corresponding span list.

Theorem (Koetter/Vardy, 2003)

Every minimal trellis is a KV-trellis (based on a suitable choice of the characteristic matrix). But not every KV-trellis is minimal.

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Theorem (G_I /Weaver, 2010)

KV-trellises are non-mergeable.

For the proof ...

... conventional trellises by Bahl, Cocke, Jelinek, Raviv (1974).

Definition (Nori/Shankar, 2006)

Let $C = \operatorname{im} G = \ker H^{\mathsf{T}}$, where

$$G = (G_0, \dots, G_{n-1})$$
 and $H = (H_0, \dots, H_{n-1})$.

Choose $N_0 \in \mathbb{F}^{k \times (n-k)}$ and define $N_{i+1} = N_i + G_i H_i^{\mathsf{T}}$. Then the trellis $T_{(G,H,N_0)}$ having vertex and edge spaces

$$V_{i} = \operatorname{im} N_{i}, \quad E_{i} = \operatorname{im} (N_{i}, G_{i}, N_{i+1}) = \left\{ (\alpha N_{i}, \alpha G_{i}, \alpha N_{i+1}) \, \middle| \, \alpha \in \mathbb{F}^{k} \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

is linear and represents the code \mathcal{C} .

- N₀ is a design parameter.
- $N_0 = 0$ leads to the minimal conventional trellis.
- $T_{(G,H,N_0)}$ may be mergeable and not one-to-one.

Theorem $(G_L/Weaver, 2010)$

Let C = im G and $S = [(a_l, b_l], l = 1, ..., k]$ be a span list of G. Define

 N_0 , based on span list S (can be made precise).

Then

- $T_{(G,H,N_0)}$ is non-mergeable.
- The product trellis $T_{G,S}$ can be merged to $T_{(G,H,N_0)}$.
- KV-trellises $T_{G,S}$ are isomorphic to their counterpart $T_{(G,H,N_0)}$ and thus KV-trellises are non-mergeable.

But:

- BCJR-trellises may not be one-to-one.
- Not every one-to-one BCJR-trellises is a KV-trellises.

Future Work: Dual Trellises for \mathcal{C}^{\perp}

- A BCJR-trellis $T_{(G,H,N_0)}$ naturally gives rise to a dual trellis $T_{(H,G,N_0^T)}$ representing C^{\perp} .
- But the dual trellis may be mergeable.
- Koetter/Vardy's characteristic pairs give rise to a

Conjecture about KV-trellises of \mathcal{C}^{\perp}

(Koetter/Vardy, 2003).

Future Work: Dual Trellises for \mathcal{C}^{\perp}

- A BCJR-trellis $T_{(G,H,N_0)}$ naturally gives rise to a dual trellis $T_{(H,G,N_0^T)}$ representing C^{\perp} .
- But the dual trellis may be mergeable.
- Koetter/Vardy's characteristic pairs give rise to a

Conjecture about KV-trellises of \mathcal{C}^{\perp}

(日) (문) (문) (문) (문)

(Koetter/Vardy, 2003).

Theorem (G_I /Weaver, 2010)

Conjecture is true for <u>minimal</u> KV-trellises and in this case the KV-dual coincides with the BCJR-dual.

Tools:

- BCJR-dualization,
- dualizing the edge spaces (Forney, 2001).