Trellis Representations for Linear Block Codes

Heide Gluesing-Luerssen

Department of Mathematics
University of Kentucky

ALCOMA10

April 2010

What is a Trellis Representation？

$$
\mathcal{C}=\operatorname{im}\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \subseteq \mathbb{F}_{2}^{6}
$$

－－－label 0
—— label 1

Code $=$ set of edge－label sequences of all cycles through the graph．
Motivation：
－decoding by（variant of）Viterbi algorithm
－code structure

What is a Trellis Representation?

Example:

Basic Notions of Trellis Representations

Definition

A trellis is a graph $T=(V, E)$, where $V=\bigcup_{i=0}^{n} V_{i}, E=\bigcup_{i=0}^{n} E_{i}$ such that

- $V_{0}=V_{n}$,
- $E_{i}=\left\{v \xrightarrow{a} w \mid v \in V_{i}, w \in V_{i+1}, a \in \mathbb{F}\right\}$ for $i=0, \ldots, n-1$.

Edge-label code

$$
\mathcal{C}(T):=\left\{\begin{array}{l|l}
\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{F}^{n} & \begin{array}{l}
\text { there exists a cycle in } T \\
v_{0} \xrightarrow{c_{0}} v_{1} \xrightarrow{c_{1}} \ldots \xrightarrow{c c_{n-1}} v_{n}=v_{0}
\end{array}
\end{array}\right\}
$$

- T represents the code $\mathcal{C} \subseteq \mathbb{F}^{n}$ if $\mathcal{C}(T)=\mathcal{C}$.
- T is called conventional if $\left|V_{0}\right|=1$ and tail-biting else.

Linear Trellis

- each vertex and edge appears in a cycle,
- V_{i} is an \mathbb{F}-vector space for all i (after suitable labeling),
- The label code

$$
\left\{v_{0} \xrightarrow{c_{0}} v_{1} \xrightarrow{c_{1}} \ldots \xrightarrow{c_{n-1}} v_{n}=v_{0}\right\}
$$

is a subspace of $V_{0} \times \mathbb{F} \times V_{1} \times \ldots \times \mathbb{F} \times V_{n-1} \times \mathbb{F}$.

Throughout this talk: only linear trellises!
Write $(v, a, w) \in V_{i} \times \mathbb{F} \times V_{i+1}$ for $v \xrightarrow{a} w$. Hence $E_{i} \subseteq V_{i} \times \mathbb{F} \times V_{i+1}$.

One-to-One Trellis

$$
\mathcal{C}(T) \xrightarrow{\text { bijective }} \text { cycles in } T \text {. }
$$

Minimality and Non-Mergeability

Minimal Trellis

There exists no trellis $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that $\mathcal{C}\left(T^{\prime}\right)=\mathcal{C}$ and

$$
\left|V_{i}^{\prime}\right| \leq\left|V_{i}\right| \text { for all } i \text { and }\left|V_{j}^{\prime}\right|<\left|V_{j}\right| \text { for some } j .
$$

Mergeable Trellis

There exist distinct vertices $v, w \in V_{i}$ that can be merged, that is, replacing v, w by a single vertex $\hat{v} \in V_{i}$ and all in- and outgoing edges of v, w accordingly results in a trellis T^{\prime} satisfying $\mathcal{C}(T)=\mathcal{C}\left(T^{\prime}\right)$.

By linearity: Merging amounts to taking a certain quotient space of V_{i}.

non-mergeable, not one-to-one not minimal

non-mergeable, one-to-one minimal

$$
\mathcal{C}(T)=\{000,110,011,101\}
$$

one-to-one, mergeable

Theorem (Forney '88, Muder '88, McEliece '92)

Let $T=(V, E)$ be a conventional trellis of \mathcal{C}. Then the following are equivalent:

- T is minimal (in the class of conventional trellises),
- T is non-mergeable,
- every conventional trellis T^{\prime} of \mathcal{C} can be merged to T, in particular,

$$
\left|V_{i}\right| \leq\left|V_{i}^{\prime}\right| \text { for all } i=0, \ldots, n-1,
$$

The minimal conventional trellis of \mathcal{C} is unique up to trellis isomorphism.
Forney's Construction:

$$
\begin{aligned}
V_{i} & :=\mathcal{C} / \mathcal{C}_{i}, \quad E_{i}:=\left\{\left([c]_{i}, c_{i},[c]_{i+1}\right) \mid c \in \mathcal{C}\right\}, \\
\mathcal{C}_{i} & :=\left\{\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{C} \mid\left(c_{0}, \ldots, c_{i-1}, 0, \ldots, 0\right) \in \mathcal{C}\right\} \\
& =\left\{\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{C} \mid\left(0, \ldots, 0, c_{i}, \ldots, c_{n-1}\right) \in \mathcal{C}\right\}
\end{aligned}
$$

Why Considering Tail-Biting Trellises?

Why Considering Tail－Biting Trellises？

$$
\mathcal{C}=\operatorname{im}\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \subseteq \mathbb{F}_{2}^{6}
$$

17 vertices， 20 edges

14 vertices， 18 edges

Both trellises are minimal．

Example (Dimension 1): $\mathcal{C}=\operatorname{im}(1,2,0,1,1) \subseteq \mathbb{F}_{3}^{5}$.
Possible spans: $(0,4],(1,0],(3,1],(4,3]$.

Example (Dimension 1): $\mathcal{C}=\operatorname{im}(1,2,0,1,1) \subseteq \mathbb{F}_{3}^{5}$.
Possible spans: $(0,4],(1,0],(3,1],(4,3]$.

Example (Dimension 1): $\mathcal{C}=\operatorname{im}\left(\underset{\longrightarrow}{(1,2,0,1,1) \subseteq \mathbb{F}_{3}^{5} .}\right.$
Possible spans: $(0,4],(1,0],(3,1],(4,3]$.

Choose the span (3, 1] and put
$V_{i}=\left\{\begin{array}{ll}\mathbb{F}_{3}, & \text { if } i \in(3,1] \\ \{0\}, & \text { else }\end{array}\right\}=\operatorname{im} v_{i}$, where $v_{i}=\left\{\begin{array}{ll}1, & \text { if } i \in(3,1] \\ 0, & \text { else }\end{array}\right\}$
$E_{i}=\operatorname{im}\left(v_{i}, c_{i}, v_{i+1}\right)=\left\{\left(\alpha v_{i}, \alpha c_{i}, \alpha v_{i+1}\right) \mid \alpha \in \mathbb{F}_{3}\right\}$
This results in the one-to-one and minimal trellis

Theorem (Kschischang/Sorokine '95)

Let $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $T^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ be trellises of \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$. Define

$$
\begin{aligned}
& V_{i}=V_{i}^{\prime} \times V_{i}^{\prime \prime} \\
& E_{i}=\left\{((v, w), a+b,(\hat{v}, \hat{w})) \mid(v, a, w) \in E_{i}^{\prime},(\hat{v}, b, \hat{w}) \in E_{i}^{\prime \prime}\right\} .
\end{aligned}
$$

Then $T=(V, E)$ is a trellis of $\mathcal{C}^{\prime}+\mathcal{C}^{\prime \prime}$.
If T^{\prime} and $T^{\prime \prime}$ are one-to-one and $\mathcal{C}^{\prime} \cap \mathcal{C}^{\prime \prime}=\{0\}$, then T is one-to-one.

Product Trellis

Let $\mathcal{C}=\operatorname{im} G$ and \mathcal{S} be a list of spans for the rows of G. Define

$$
T_{G, \mathcal{S}}
$$

as the product of the corresponding 1-dimensional trellises.

Product trellises

- are linear and one-to-one,
- but may be mergeable and thus not minimal.

Example

$$
\mathcal{C}=\operatorname{im}\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \subseteq \mathbb{F}_{2}^{3}, \quad \mathcal{S}=\left[\begin{array}{l}
(0,2] \\
(1,0]
\end{array}\right]
$$

The Minimal Conventional Trellis as a Product Trellis

Theorem (Kschischang/Sorokine '95, McEliece, '96)

There exists a pair (G, \mathcal{S}) such that the span list

$$
\mathcal{S}=\left[\left(a_{l}, b_{l}\right], I=1, \ldots, k\right]
$$

satisfies

- $\left(a_{l}, b_{l}\right]$ is conventional for all $I=1, \ldots, k$,
- a_{1}, \ldots, a_{k} are distinct,
- b_{1}, \ldots, b_{k} are distinct.

The corresponding product trellis $T_{G, \mathcal{S}}$ is the minimal conventional trellis of $\mathcal{C}=\mathrm{im} G$.

The span list \mathcal{S} is uniquely determined by \mathcal{C}.

We call G a conventional trellis-oriented generator matrix of \mathcal{C}.

Characteristic Pair of a Code

$\mathcal{C} \subseteq \mathbb{F}^{n}$ be a k-dimensional code with support $\{0, \ldots, n-1\}$.

Theorem (generalized version of Koetter/Vardy, 2003)

There exists a characteristic pair of \mathcal{C}, that is,

$$
X=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{F}^{n \times n} \text { and } \mathcal{T}=\left[\begin{array}{c}
\left(a_{1}, b_{1}\right] \\
\vdots \\
\left(a_{n}, b_{n}\right]
\end{array}\right]
$$

with the following properties

- $\operatorname{im} X=\mathcal{C}$, that is, $\left\{x_{1}, \ldots, x_{n}\right\}$ forms a generating set of \mathcal{C}.
- $\left(a_{l}, b_{l}\right]$ is a span of x_{l} for $I=1, \ldots, n$.
- a_{1}, \ldots, a_{n} are distinct and b_{1}, \ldots, b_{n} are distinct.
- For all $j=0, \ldots, n-1$ the shifted pair $\left(\sigma^{j}(X), \sigma^{j}(\mathcal{T})\right)$ contains a conventional trellis-oriented generator matrix of $\sigma^{j}(\mathcal{C})$.

The span list \mathcal{T} is uniquely determined by \mathcal{C}, the matrix X is not.

Characteristic Pair of a Code
Example: $\quad \mathcal{C}=i m\left(\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$. Then

$$
X=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1
\end{array}\right), \quad \mathcal{T}=\left[\begin{array}{c}
(0,4] \\
(1,5] \\
(3,0] \\
(2,1] \\
(4,2] \\
(5,3]
\end{array}\right]
$$

$\mathcal{S}=[(0,4],(1,5]]$

$$
\hat{\mathcal{S}}=[(0,4],(3,0]]
$$

KV-Trellises

Definition

A KV-trellis of \mathcal{C} is a product trellis $T_{G, \mathcal{S}}$, where

- $G \in \mathbb{F}^{k \times n}$ is a full row rank submatrix of a characteristic matrix of \mathcal{C},
- \mathcal{S} is the corresponding span list.

Theorem (Koetter/Vardy, 2003)

Every minimal trellis is a KV-trellis (based on a suitable choice of the characteristic matrix). But not every KV-trellis is minimal.

Theorem (GL/Weaver, 2010)

KV-trellises are non-mergeable.
For the proof...

BCJR-Construction

... conventional trellises by Bahl, Cocke, Jelinek, Raviv (1974).

Definition (Nori/Shankar, 2006)

Let $\mathcal{C}=\operatorname{im} G=\operatorname{ker} H^{\top}$, where

$$
G=\left(G_{0}, \ldots, G_{n-1}\right) \text { and } H=\left(H_{0}, \ldots, H_{n-1}\right)
$$

Choose $N_{0} \in \mathbb{F}^{k \times(n-k)}$ and define $N_{i+1}=N_{i}+G_{i} H_{i}^{\top}$.
Then the trellis $T_{\left(G, H, N_{0}\right)}$ having vertex and edge spaces

$$
V_{i}=\operatorname{im} N_{i}, \quad E_{i}=\operatorname{im}\left(N_{i}, G_{i}, N_{i+1}\right)=\left\{\left(\alpha N_{i}, \alpha G_{i}, \alpha N_{i+1}\right) \mid \alpha \in \mathbb{F}^{k}\right\}
$$

is linear and represents the code \mathcal{C}.

- N_{0} is a design parameter.
- $N_{0}=0$ leads to the minimal conventional trellis.
- $T_{\left(G, H, N_{0}\right)}$ may be mergeable and not one-to-one.

Theorem ($\mathrm{G}_{\mathrm{L}} /$ Weaver, 2010)

Let $\mathcal{C}=\operatorname{im} G$ and $\mathcal{S}=\left[\left(a_{l}, b_{l}\right], I=1, \ldots, k\right]$ be a span list of G. Define
N_{0}, based on span list \mathcal{S} (can be made precise).
Then

- $T_{\left(G, H, N_{0}\right)}$ is non-mergeable.
- The product trellis $T_{G, \mathcal{S}}$ can be merged to $T_{\left(G, H, N_{0}\right)}$.
- KV-trellises $T_{G, \mathcal{S}}$ are isomorphic to their counterpart $T_{\left(G, H, N_{0}\right)}$ and thus KV-trellises are non-mergeable.

But:

- BCJR-trellises may not be one-to-one.
- Not every one-to-one BCJR-trellises is a KV-trellises.

Future Work：Dual Trellises for \mathcal{C}^{\perp}

－A BCJR－trellis $T_{\left(G, H, N_{0}\right)}$ naturally gives rise to a dual trellis $T_{\left(H, G, N_{0}^{\top}\right)}$ representing \mathcal{C}^{\perp} ．
－But the dual trellis may be mergeable．
－Koetter／Vardy＇s characteristic pairs give rise to a
Conjecture about KV－trellises of \mathcal{C}^{\perp}
（Koetter／Vardy，2003）．

Future Work: Dual Trellises for \mathcal{C}^{\perp}

- A BCJR-trellis $T_{\left(G, H, N_{0}\right)}$ naturally gives rise to a dual trellis $T_{\left(H, G, N_{0}^{\top}\right)}$ representing \mathcal{C}^{\perp}.
- But the dual trellis may be mergeable.
- Koetter/Vardy's characteristic pairs give rise to a

Conjecture about KV-trellises of \mathcal{C}^{\perp}

(Koetter/Vardy, 2003).

Theorem (GL/Weaver, 2010)

Conjecture is true for minimal KV-trellises and in this case the KV-dual coincides with the BCJR-dual.

Tools:

- BCJR-dualization,
- dualizing the edge spaces (Forney, 2001).

