Codes and Designs in the Grassmann Scheme

Tuvi Etzion

Computer Science Department Technion -Israel Institute of Technology etzion@cs.technion.ac.il

ALGEBRAIC COMBINATORICS AND APPLICATIONS ALCOMA10, Thurnau, Germany, 13 April 2010

Joint work with Alexander Vardy

소리가 소문가 소문가 소문가

Outline

- Background
- Bounds on the Sizes of Codes
- Known Constructions for Constant Dimension Codes
- New Construction for Constant Weight Codes
- Definitions for *q*-Covering Designs
- Bounds on the Size of q-Covering Designs

Background

Definition

The projective space of order *n* over the finite field \mathbb{F}_q , denoted as $\mathcal{P}_q(n)$, is the set of all subspaces of the vector space \mathbb{F}_q^n .

Definition

The natural measure of distance in $\mathcal{P}_q(n)$ is given by

$$d(U, V) \stackrel{\text{def}}{=} \dim U + \dim V - 2\dim(U \cap V)$$

for all $U, V \in \mathcal{P}_q(n)$.

Definition

 $\mathbb{C} \subseteq \mathcal{P}_q(n)$ is an (n, M, d) code in projective space if $|\mathbb{C}| = M$ and $d(U, V) \ge d$ for all U, V in \mathbb{C} .

(ロ) (同) (E) (E) (E)

Koetter and Kschischang [2007] showed that codes in $\mathbb{P}_q(n)$ are precisely what is needed for error-correction in networks.

Background

Definition

Given an integer $0 \le k \le n$, the set of all subspaces of \mathbb{F}_q^n with dimension k is known as a Grassmannian, and denoted by $\mathcal{G}_q(n, k)$.

Definition

 $\mathbb{C} \subseteq \mathcal{G}_q(n,k)$ is an (n, M, d, k) code in the Grassmannian if $|\mathbb{C}| = M$ and $d(U, V) \ge d$ for all U, V in \mathbb{C} .

Definition

A *q*-analog $t - (n, k, \lambda)$ design is a set \mathbb{S} of *k*-dimensional subspaces (called blocks) from \mathbb{F}_q^n , such that each *t*-dimensional subspace of \mathbb{F}_q^n is a subspace of exactly λ blocks from \mathbb{S} .

(ロ) (同) (E) (E) (E)

Background

q-analog designs:

Thomas [1987, 1996] Suzuki [1990, 1992] Miyakawa, Munemasa, and Yosihiara [1995] Itoh [1998] Ahlswede, Aydinian, and Khachatrian [2001] Schwartz and Etzion [2002] Braun, Kerber, and Laue [2005]

Bounds on the Sizes of Codes

Definition

A Steiner structure $S_q[r, k, n]$ is a collection \mathbb{S} of elements from $\mathcal{G}_q(n, k)$ such that each element from $\mathcal{G}_q(n, r)$ is contained in exactly one element of \mathbb{S} .

Definition

Let $\mathcal{A}_q(n, d, k)$ denote the maximum number of codewords in an (n, M, d, k) code in $\mathcal{G}_q(n, k)$.

Theorem

$$\mathcal{A}_{q}(n, 2\delta + 2, k) \leq \frac{\begin{bmatrix} n \\ k - \delta \end{bmatrix}_{q}}{\begin{bmatrix} k \\ k - \delta \end{bmatrix}_{q}} \text{ with equality holds if and only if a}$$

Steiner structure $S_{q}[k - \delta, k, n]$ exists.

Bounds on the Sizes of Codes

Definition

For a set $\mathbb{S} \subset \mathcal{G}_q(n, k)$ let \mathbb{S}^{\perp} be the orthogonal complement of \mathbb{S} :

 $\mathbb{S}^{\perp} = \{ A^{\perp} : A \in \mathcal{S} \},$

where $A^{\perp} \in \mathcal{G}_q(n, n-k)$ is the orthogonal complement of the subspace A.

Theorem (complements)

 $\mathcal{A}_q(n,d,k) = \mathcal{A}_q(n,d,n-k).$

イロト イポト イヨト イヨト 二日

Bounds on the Sizes of Codes

Theorem (Johnson)

$$\blacktriangleright \mathcal{A}_q(n,2\delta,k) \leq \frac{q^n-1}{q^k-1} \mathcal{A}_q(n-1,2\delta,k-1).$$

$$\quad \bullet \quad \mathcal{A}_q(n, 2\delta, k) \leq \frac{q^n - 1}{q^{n-k} - 1} \mathcal{A}_q(n-1, 2\delta, k).$$

Corollary

$$\mathcal{A}_q(n,2\delta,k) \leq \lfloor \frac{q^{n-1}}{q^{k-1}} \lfloor \frac{q^{n-1}-1}{q^{k-1}-1} \cdots \lfloor \frac{q^{n+1-r}-1}{q^{k+1-r}-1} \rfloor \cdots \rfloor \rfloor \leq \frac{\left[\begin{array}{c} n \\ k-\delta+1 \end{array} \right]_q}{\left[\begin{array}{c} k \\ k-\delta+1 \end{array} \right]_q}$$

Lemma

$$\mathcal{A}_q(n,2k,k) \, \leq \, \left\lfloor rac{q^n-1}{q^k-1}
ight
floor - 1 \qquad ext{if } n
ot\equiv 0 \pmod{k}$$

イロト イロト イヨト イヨト 三日

Tuvi Etzion - Computer Science Department, Technion Codes and Designs in the Grassmann Scheme

Constant Dimension Codes (Steiner structure)

Construction

Let n = sk, $r = \frac{q^n - 1}{q^k - 1}$, and let α be a primitive element in $GF(q^n)$. For each i, $0 \le i \le r - 1$, we define

$$H_i = \{\alpha^i, \alpha^{r+i}, \alpha^{2r+i}, \ldots, \alpha^{(q^k-2)r+i}\}.$$

The set $\{H_i : 0 \le i \le r-1\}$ is a Steiner structure $S_q[1, k, n]$.

Theorem

Let $n \equiv r \pmod{k}$. Then, for all q, we have

$$\mathcal{A}_q(n,2k,k) \geq \frac{q^n - q^k(q^r - 1) - 1}{q^k - 1}$$

イロト イポト イヨト イヨト

Definition

We can represent $X \in \mathcal{G}_q(n, k)$ by the k linearly independent vectors from X which form a unique $k \times n$ generator matrix in reduced row echelon form, denoted by RE(X), and defined by:

- The leading coefficient of a row is always to the right of the leading coefficient of the previous row.
- All leading coefficients are ones.
- Every leading coefficient is the only nonzero entry in its column.

Definition

For each $X \in \mathcal{G}_q(n, k)$ we associate a binary vector of length n and weight k, v(X), called the identifying vector of X, where the ones in v(X) are in the positions where RE(X) has the leading ones.

Example

Let X be the subspace in $\mathcal{G}_2(7,3)$ with the following generator matrix in reduced row echelon form:

Its identifying vector is v(X) = 1011000, and its echelon Ferrers form, Ferrers diagram, and Ferrers tableaux form are given by

$$\begin{bmatrix} 1 & \bullet & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 1 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 1 & \bullet & \bullet \end{bmatrix}, \quad \begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & 0 & 1 & 1 & 0 \\ \bullet & \bullet & \bullet & \bullet & and & 1 & 0 & 1 & . \\ \bullet & \bullet & \bullet & & 0 & 1 & 1 \end{bmatrix}$$

Definition

For two $k \times \eta$ matrices A and B over \mathbb{F}_q the rank distance is defined by $d_R(A, B) \stackrel{\text{def}}{=} \operatorname{rank}(A - B)$.

Definition

A code C is an $[m \times \eta, \rho, \delta]$ rank-metric code if its codewords are $k \times \eta$ matrices over \mathbb{F}_q , they form a linear subspace of dimension ρ of $\mathbb{F}_q^{k \times \eta}$, and for $A, B \in C$ we have that $d_R(A, B) \ge \delta$.

Theorem

Let C be an $[k \times \eta, \rho, \delta]$ rank-metric code. The subspaces spanned by the set of matrices in reduced row echelon form

 $\{[I_k A] : A \in \mathcal{C}\}$

form a $(k + \eta, q^{\rho}, 2\delta, k)$ code (identifying vector $1 \dots 10 \dots 0$).

First codes constructed: Koetter and Kschischang [2007].

First lifted codes: Silva, Koetter and Kschischang [2008]

Multilevel Construction: Etzion and Silberstein [2009]

Constant Dimension Codes (Cyclic Codes)

Definition (Cyclic codes)

Let α be a primitive element of $GF(2^n)$. We say that a code \mathbb{C} is cyclic if it has the following property: $\{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_m}\}$ is a codeword of \mathbb{C} , so is its cyclic shift $\{0, \alpha^{i_1+1}, \alpha^{i_2+1}, \ldots, \alpha^{i_m+1}\}$. In other words, if we map each vector space $V \in \mathbb{C}$ into the corresponding binary characteristic vector $x_V = (x_0, x_1, \ldots, x_{2^n-2})$ given by

$$x_i = 1$$
 if $\alpha^i \in V$ and $x_i = 0$ if $\alpha^i \notin V$

then the set of all such characteristic vectors is closed under cyclic shifts.

イロト イポト イヨト イヨト 二日

Constant Dimension Codes (cyclic Codes)

- $A_2(8,4,3) \ge 1275$ (compare to $A_2(8,4,3) \le 1493$)
- $\mathcal{A}_2(9,4,3) \ge 5694$ (compare to $\mathcal{A}_2(9,4,3) \le 6205$)
- ▶ $A_2(10,4,3) \ge 21483$ (compare to $A_2(10,4,3) \le 24698$)
- $\mathcal{A}_2(11,4,3) \ge 79833$ (compare to $\mathcal{A}_2(11,4,3) \le 99718$)
- $A_2(12,4,3) \ge 315315$ (compare to $A_2(12,4,3) \le 398385$)
- ▶ $A_2(13,4,3) \ge 1154931$ (compare to $A_2(13,4,3) \le 1597245$)
- ▶ $A_2(14,4,3) \ge 4177665$ (compare to $A_2(14,4,3) \le 6387029$)

Kohnert and Kurz [2008] Etzion and Vardy [2008]

イロト イポト イラト イラト 一日

Construction (COS - cosets of constant dimension code)

Let \mathbb{C} be an (n, M, d, k) code. From $X = \{0, \alpha_1, \dots, \alpha_{2^k-1}\} \in \mathbb{C}$ we form the following set of words with weight 2^k :

$$\mathcal{C}_X = \{\{\beta, \beta + \alpha_1, \beta + \alpha_2, \dots, \beta + \alpha_{2^k - 1}\} : \beta \in \mathbb{F}_2^n\}.$$

The words of C_x represent the cosets of the the *k*-dimensional subspace *X*. Therefore, $|C_X| = 2^{n-k}$. We define our code *C* as the union of all the sets C_X over all codewords of \mathbb{C} , *i.e.*,

$$\mathcal{C} = \bigcup_{X \in \mathbb{C}} \mathcal{C}_X = \{\{\beta, \beta + \alpha_1, \beta + \alpha_2, \dots, \beta + \alpha_{2^k - 1}\} : \{0, \alpha_1, \dots, \alpha_{2^k - 1}\} \in \mathbb{C}, \ \beta \in \mathbb{F}_2^n\} .$$

イロト イポト イヨト イヨト

Theorem

If \mathbb{C} is an [n, M, d = 2t, k] code then C of Construction COS is a $(2^n, 2^{n-k}M, 2^{k+1} - 2^{k-t+1}, 2^k)$ code.

Example

Let \mathbb{C} be and an $[n, \frac{(2^n-1)(2^{n-1}-1)}{3}, 2, 2]$ code which consists of all 2-dimensional subspaces of \mathbb{F}_2^n . \mathcal{C} is a $(2^n, \frac{(2^n-1)(2^{n-1}-1)2^{n-2}}{3}, 4, 4)$ code forming the codewords of weight four in the extended Hamming code of length 2^n , i.e., a Steiner system $S(3, 4, 2^n)$.

Example

Let \mathbb{C} be an $[n, 2^n - 1, 2, n - 1]$ code (all (n - 1)-dimensional subspaces of \mathbb{F}_2^n). \mathcal{C} is a $(2^n, 2^{n+1} - 2, 2^{n-1}, 2^{n-1})$. If we join to \mathcal{C} the allone and the allzero codewords then the formed code is a Hadamard code (a Hadamard matrix and its complement).

Definition

A(n, d, w) is the maximum size of a binary constant weight code of length n, weight w, and minimum Hamming distance d.

Theorem (Johnson)

If $n \ge w > 0$ then

$$A(n,d,w) \leq \left\lfloor \frac{n}{w} A(n-1,d,w-1) \right\rfloor$$

イロト イポト イヨト イヨト

Theorem (Agrell, Vardy, Zeger) If b > 0 then

$$A(n, 2\delta, w) \leq \left\lfloor \frac{\delta}{b} \right\rfloor,$$

where

$$b = \delta - \frac{w(n-w)}{n} + \frac{n}{M^2} \left\{ M \frac{w}{n} \right\} \left\{ M \frac{n-w}{n} \right\}$$
$$M = A(n, 2\delta, w)$$
$$\{x\} = x - \lfloor x \rfloor$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem

•
$$A(2^{2m-1}-1, 2^{m+1}-4, 2^m-1) = 2^m + 1.$$

•
$$A(2^{2m-1}, 2^{m+1} - 4, 2^m) = 2^{2m-1} + 2^{m-1}$$
.

Proof.

The upper bound $A(2^{2m-1}-1, 2^{m+1}-4, 2^m-1) \le 2^m+1$ is a direct application of AVZ Theorem. Using this bound in Johnson Theorem we obtain $A(2^{2m-1}, 2^{m+1} - 4, 2^m) \le 2^{2m-1} + 2^{m-1}$. By applying Construction COS on a $[2m - 1, 2^m + 1, 2m - 2, m]$ code we obtain a $(2^{2m-1}, 2^{2m-1} + 2^{m-1}, 2^{m+1} - 4, 2^m)$ code. Hence. $A(2^{2m-1}, 2^{m+1} - 4, 2^m) > 2^{2m-1} + 2^{m-1}$ and thus $A(2^{2m-1}, 2^{m+1} - 4, 2^m) = 2^{2m-1} + 2^{m-1}$. By shortening the $(2^{2m-1}, 2^{2m-1} + 2^{m-1}, 2^{m+1} - 4, 2^m)$ code we obtain a $(2^{2m-1}-1, 2^m+1, 2^{m+1}-4, 2^m-1)$ code and hence $A(2^{2m-1}-1, 2^{m+1}-4, 2^m-1) = 2^m + 1.$

イロン イヨン イヨン イヨン

Theorem

If a Steiner Structure $S_2[2, k, n]$ exists then a Steiner system $S(3, 2^k, 2^n)$ exists.

Theorem

If a Steiner Structure $S_2[2, 3, 7]$ exists then a Steiner system S(3, 8, 128) exists.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions for *q*-**Covering Designs**

Definition

A *q*-covering design $C_q[n, k, r]$ is a collection \mathbb{S} of elements from $\mathcal{G}_q(n, k)$ such that each element of $\mathcal{G}_q(n, r)$ is contained in at least one element of \mathbb{S} .

Definition

A *q*-Turán design $T_q[n, k, r]$ is a collection \mathbb{S} of elements from $\mathcal{G}_q(n, r)$ such that each element of $\mathcal{G}_q(n, k)$ contains at least one element from \mathbb{S} .

イロト イポト イヨト イヨト 二日

Definitions for *q***-Covering designs**

Definition

The *q*-covering number $C_q(n, k, r)$ is the minimum size of a *q*-covering design $C_q[n, k, r]$.

Definition

The *q*-Turán number $T_q(n, k, r)$ is the minimum size of a *q*-Turán design $T_q[n, k, r]$.

Basic Bounds on *q*-Covering numbers

Theorem

S is a q-covering design $C_q[n, k, r]$ if and only if S^{\perp} is a q-Turán design $T_q[n, n - r, n - k]$.

Corollary

 $\mathcal{C}_q(n,k,r) = \mathcal{T}_q(n,n-r,n-k).$

イロト イポト イヨト イヨト 二日

Basic Bounds on *q*-Covering numbers

Theorem

$$C_q(n, k, r) \ge \frac{\begin{bmatrix} n \\ r \end{bmatrix}_q}{\begin{bmatrix} k \\ r \end{bmatrix}_q} \text{ with equality holds if and only if a Steiner}$$
structure $S_q[r, k, n]$ exists.

Theorem

$$T_q(n,k,r) \leq \left[\begin{array}{c} n-k+r \\ r \end{array} \right]_q$$

Corollary

$$C_q(n,k,r) = T_q(n,n-r,n-k) \leq \begin{bmatrix} n-k+r \\ r \end{bmatrix}$$

Tuvi Etzion - Computer Science Department, Technion

Codes and Designs in the Grassmann Scheme

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Optimal *q*-Covering Designs

Theorem

$$C_q(n, k, 1) = T_q(n, n-1, n-k) = |S_q[1, k, n]| = \frac{q^n - 1}{q^k - 1}$$
, whenever *k* divides *n*.

Theorem

If
$$1 \leq k \leq n$$
, then $C_q(n, k, 1) = \lceil \frac{q^n - 1}{q^k - 1} \rceil$.

Theorem

If
$$1 \le k \le n-1$$
, then $C_q(n, n-1, k) = rac{q^{k+1}-1}{q-1}$.

(日) (回) (E) (E) (E)

Upper Bounds on the Size of *q*-Covering Designs

Theorem (Recursive Construction)

 $\mathcal{C}_q(n,k,r) \leq q^{n-k} \mathcal{C}_q(n-1,k-1,r-1) + \mathcal{C}_q(n-1,k,r).$

Proof.

We represent \mathbb{F}_q^n by $\{(\alpha, \beta) : \alpha \in \mathbb{F}_q^{n-1}, \beta \in \mathbb{F}_q\}$. Let \mathbb{S}_1 be a *q*-covering design $C_q[n-1, k-1, r-1]$ and \mathbb{S}_2 be a *q*-covering design $C_q[n-1, k, r]$. We form a set \mathbb{S} as follows:

► For each subspace $P = \{0, \alpha_1, \cdots, \alpha_{q^{k-1}-1}\} \in \mathbb{S}_1$ let $P_1 = P, P_2, \ldots, P_{q^{n-k}}$ be the disjoint cosets of P in \mathbb{F}_q^{n-1} . Let $\beta_0 = 0, \beta_1, \ldots, \beta_{q^{n-k}}$ be any q^{n-k} coset representatives, i.e., $\beta_i \in P_i, 1 \le i \le q^{n-k}$. For each $1 \le i \le q^{n-k}$ we form the subspace $\langle \{(\alpha_1, 0), \cdots, (\alpha_{q^{k-1}-1}, 0), (\beta_i, 1)\} \rangle$ in \mathbb{S} .

► For each subspace $\{0, \alpha_1, \cdots, \alpha_{q^k-1}\} \in \mathbb{S}_2$ the subspace $\{(0, 0), (\alpha_1, 0), \cdots, (\alpha_{q^k-1}, 0)\}$ is formed in \mathbb{S} .

S is a *q*-covering design $C_q[n, k, r]$ and the theorem follows.

Lower Bounds on the Size of *q*-Covering Designs

Theorem

$$\mathcal{C}_q(n,k,r) \geq \lceil \frac{q^n-1}{q^k-1} \mathcal{C}_q(n-1,k-1,r-1) \rceil.$$

Corollary

$$\mathcal{C}_q(n,k,r) \geq \left\lceil \frac{q^{n-1}}{q^{k-1}} \left\lceil \frac{q^{n-1}-1}{q^{k-1}-1} \cdots \left\lceil \frac{q^{n+1-r}-1}{q^{k+1-r}-1} \right\rceil \cdots \right\rceil \right\rceil \geq \frac{\left\lceil n \atop r \right\rceil_q}{\left\lceil k \atop r \right\rceil_q}$$

Theorem

$$\mathcal{T}_q(n,r+1,r) \geq rac{(q^{n-r}-1)(q-1)}{(q^r-1)^2} \left[egin{array}{c} n \\ r-1 \end{array}
ight]_q.$$

Corollary

$$\mathcal{C}_q(n,k,k-1) \geq rac{(q^k-1)(q-1)}{(q^{n-k}-1)^2} \left[egin{array}{c} n \\ k+1 \end{array}
ight]_q$$

Tuvi Etzion - Computer Science Department, Technion

Codes and Designs in the Grassmann Scheme

Some Specific Bounds

Theorem

 $\mathcal{C}_2(5,3,2)=27.$ (compared to $\mathcal{C}_2(5,3,2)\geq 23$ by previous theorem).

Theorem

 $381 \leq C_2(7,3,2) \leq 399.$

Theorem

 $304 \leq A_2(7,4,3) \leq 381.$

・ロト ・四ト ・ヨト ・ヨト - ヨ

THANK YOU

Tuvi Etzion - Computer Science Department, Technion Codes and Designs in the Grassmann Scheme

イロト イロト イヨト イヨト 二日