Codes and Designs in the Grassmann Scheme

Tuvi Etzion

Computer Science Department
Technion - Israel Institute of Technology
etzion@cs.technion.ac.il

ALGEBRAIC COMBINATORICS AND APPLICATIONS
ALCOMA10, Thurnau, Germany, 13 April 2010

Joint work with Alexander Vardy
Outline

- Background
- Bounds on the Sizes of Codes
- Known Constructions for Constant Dimension Codes
- New Construction for Constant Weight Codes
- Definitions for q-Covering Designs
- Bounds on the Size of q-Covering Designs
Background

Definition

The projective space of order n over the finite field \mathbb{F}_q, denoted as $\mathcal{P}_q(n)$, is the set of all subspaces of the vector space \mathbb{F}_q^n.

Definition

The natural measure of distance in $\mathcal{P}_q(n)$ is given by

$$d(U, V) \overset{\text{def}}{=} \dim U + \dim V - 2 \dim (U \cap V)$$

for all $U, V \in \mathcal{P}_q(n)$.

Definition

$\mathcal{C} \subseteq \mathcal{P}_q(n)$ is an (n, M, d) code in projective space if $|\mathcal{C}| = M$ and $d(U, V) \geq d$ for all U, V in \mathcal{C}.

Koetter and Kschischang [2007] showed that codes in $\mathcal{P}_q(n)$ are precisely what is needed for error-correction in networks.
Background

Definition

Given an integer $0 \leq k \leq n$, the set of all subspaces of \mathbb{F}_q^n with dimension k is known as a Grassmannian, and denoted by $\mathcal{G}_q(n, k)$.

Definition

$\mathbb{C} \subseteq \mathcal{G}_q(n, k)$ is an (n, M, d, k) code in the Grassmannian if $|\mathbb{C}| = M$ and $d(U, V) \geq d$ for all U, V in \mathbb{C}.

Definition

A q-analog $t - (n, k, \lambda)$ design is a set \mathcal{S} of k-dimensional subspaces (called blocks) from \mathbb{F}_q^n, such that each t-dimensional subspace of \mathbb{F}_q^n is a subspace of exactly λ blocks from \mathcal{S}.
Background

q-analog designs:

Thomas [1987, 1996]
Suzuki [1990, 1992]
Miyakawa, Munemasa, and Yosihiara [1995]
Itoh [1998]
Ahlswede, Aydinian, and Khachatrian [2001]
Schwartz and Etzion [2002]
Braun, Kerber, and Laue [2005]
Bounds on the Sizes of Codes

Definition

A Steiner structure $S_q[r, k, n]$ is a collection S of elements from $G_q(n, k)$ such that each element from $G_q(n, r)$ is contained in exactly one element of S.

Definition

Let $A_q(n, d, k)$ denote the maximum number of codewords in an (n, M, d, k) code in $G_q(n, k)$.

Theorem

$A_q(n, 2\delta + 2, k) \leq \begin{vmatrix} n \\ k - \delta \end{vmatrix}_q \begin{vmatrix} k \\ k - \delta \end{vmatrix}_q$ with equality holds if and only if a Steiner structure $S_q[k - \delta, k, n]$ exists.
Definition

For a set $S \subset G_q(n, k)$ let S^\perp be the orthogonal complement of S:

$$S^\perp = \{A^\perp : A \in S\},$$

where $A^\perp \in G_q(n, n - k)$ is the orthogonal complement of the subspace A.

Theorem (complements)

$A_q(n, d, k) = A_q(n, d, n - k)$.

Tuvi Etzion - Computer Science Department, Technion

Codes and Designs in the Grassmann Scheme
Bounds on the Sizes of Codes

Theorem (Johnson)

1. \(A_q(n, 2\delta, k) \leq \frac{q^{n-1}}{q^{k-1}} A_q(n-1, 2\delta, k-1). \)
2. \(A_q(n, 2\delta, k) \leq \frac{q^{n-1}}{q^{n-k-1}} A_q(n-1, 2\delta, k). \)

Corollary

\(A_q(n, 2\delta, k) \leq \left\lfloor \frac{q^{n-1}-1}{q^{k-1}-1} \right\rfloor \cdots \left\lfloor \frac{q^{n+1-r}-1}{q^{k+1-r}-1} \right\rfloor \cdots \leq \binom{n}{k-\delta+1}_q \).

Lemma

\(A_q(n, 2k, k) \leq \left\lfloor \frac{q^n-1}{q^k-1} \right\rfloor - 1 \quad \text{if} \; n \not\equiv 0 \pmod{k} \)
Constant Dimension Codes (Steiner structure)

Construction

Let \(n = sk \), \(r = \frac{q^n-1}{q^k-1} \), and let \(\alpha \) be a primitive element in \(GF(q^n) \). For each \(i, 0 \leq i \leq r - 1 \), we define

\[
H_i = \{ \alpha^i, \alpha^{r+i}, \alpha^{2r+i}, \ldots, \alpha^{(q^k-2)r+i} \}.
\]

The set \(\{H_i : 0 \leq i \leq r - 1\} \) is a Steiner structure \(S_q[1, k, n] \).

Theorem

Let \(n \equiv r \pmod{k} \). Then, for all \(q \), we have

\[
A_q(n, 2k, k) \geq \frac{q^n - q^k(q^r - 1) - 1}{q^k - 1}
\]
Constant Dimension Codes (Lifted Codes)

Definition
We can represent $X \in \mathcal{G}_q(n, k)$ by the k linearly independent vectors from X which form a unique $k \times n$ generator matrix in reduced row echelon form, denoted by $RE(X)$, and defined by:

- The leading coefficient of a row is always to the right of the leading coefficient of the previous row.
- All leading coefficients are ones.
- Every leading coefficient is the only nonzero entry in its column.

Definition
For each $X \in \mathcal{G}_q(n, k)$ we associate a binary vector of length n and weight k, $v(X)$, called the identifying vector of X, where the ones in $v(X)$ are in the positions where $RE(X)$ has the leading ones.
Example

Let X be the subspace in $G_2(7, 3)$ with the following generator matrix in reduced row echelon form:

$$
RE(X) = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\end{pmatrix}.
$$

Its identifying vector is $v(X) = 1011000$, and its echelon Ferrers form, Ferrers diagram, and Ferrers tableaux form are given by

$$
\begin{bmatrix}
1 & \bullet & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 1 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 1 & \bullet & \bullet & \bullet \\
\end{bmatrix}, \quad
\begin{bmatrix}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet, \quad \text{and} \quad \bullet & \bullet & \bullet \\
\end{bmatrix}
$$

Tuvi Etzion - Computer Science Department, Technion

Codes and Designs in the Grassmann Scheme
Constant Dimension Codes (Lifted Codes)

Definition
For two \(k \times \eta \) matrices \(A \) and \(B \) over \(\mathbb{F}_q \) the rank distance is defined by \(d_R(A, B) \overset{\text{def}}{=} \text{rank}(A - B) \).

Definition
A code \(C \) is an \([m \times \eta, \rho, \delta]\) rank-metric code if its codewords are \(k \times \eta \) matrices over \(\mathbb{F}_q \), they form a linear subspace of dimension \(\rho \) of \(\mathbb{F}_q^{k \times \eta} \), and for \(A, B \in C \) we have that \(d_R(A, B) \geq \delta \).

Theorem
Let \(C \) be an \([k \times \eta, \rho, \delta]\) rank-metric code. The subspaces spanned by the set of matrices in reduced row echelon form

\[
\{ [I_k A] : A \in C \}
\]

form a \((k + \eta, q^\rho, 2\delta, k)\) code (identifying vector \(1 \ldots 10 \ldots 0 \)).
Constant Dimension Codes (Lifted Codes)

First codes constructed: Koetter and Kschischang [2007].

First lifted codes: Silva, Koetter and Kschischang [2008]

Multilevel Construction: Etzion and Silberstein [2009]
Definition (Cyclic codes)

Let \(\alpha \) be a primitive element of \(\text{GF}(2^n) \). We say that a code \(\mathcal{C} \) is cyclic if it has the following property: \(\{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_m}\} \) is a codeword of \(\mathcal{C} \), so is its cyclic shift \(\{0, \alpha^{i_1+1}, \alpha^{i_2+1}, \ldots, \alpha^{i_m+1}\} \). In other words, if we map each vector space \(V \in \mathcal{C} \) into the corresponding binary characteristic vector \(x_V = (x_0, x_1, \ldots, x_{2^n-2}) \) given by

\[
x_i = 1 \quad \text{if} \quad \alpha^i \in V \quad \text{and} \quad x_i = 0 \quad \text{if} \quad \alpha^i \notin V
\]

then the set of all such characteristic vectors is closed under cyclic shifts.
Constant Dimension Codes (cyclic Codes)

- $\mathcal{A}_2(8, 4, 3) \geq 1275$ (compare to $\mathcal{A}_2(8, 4, 3) \leq 1493$)
- $\mathcal{A}_2(9, 4, 3) \geq 5694$ (compare to $\mathcal{A}_2(9, 4, 3) \leq 6205$)
- $\mathcal{A}_2(10, 4, 3) \geq 21483$ (compare to $\mathcal{A}_2(10, 4, 3) \leq 24698$)
- $\mathcal{A}_2(11, 4, 3) \geq 79833$ (compare to $\mathcal{A}_2(11, 4, 3) \leq 99718$)
- $\mathcal{A}_2(12, 4, 3) \geq 315315$ (compare to $\mathcal{A}_2(12, 4, 3) \leq 398385$)
- $\mathcal{A}_2(13, 4, 3) \geq 1154931$ (compare to $\mathcal{A}_2(13, 4, 3) \leq 1597245$)
- $\mathcal{A}_2(14, 4, 3) \geq 4177665$ (compare to $\mathcal{A}_2(14, 4, 3) \leq 6387029$)

Kohnert and Kurz [2008]
Etzion and Vardy [2008]
New Construction for Constant Weight Codes

Construction (COS - cosets of constant dimension code)

Let C be an (n, M, d, k) code. From $X = \{0, \alpha_1, \ldots, \alpha_{2^k-1}\} \in C$ we form the following set of words with weight 2^k:

$$C_X = \left\{ \{ \beta, \beta + \alpha_1, \beta + \alpha_2, \ldots, \beta + \alpha_{2^k-1}\} : \beta \in \mathbb{F}_2^n \right\}.$$

The words of C_X represent the cosets of the k-dimensional subspace X. Therefore, $|C_X| = 2^{n-k}$. We define our code C as the union of all the sets C_X over all codewords of C, i.e.,

$$C = \bigcup_{X \in C} C_X = \left\{ \{ \beta, \beta + \alpha_1, \beta + \alpha_2, \ldots, \beta + \alpha_{2^k-1}\} : \{0, \alpha_1, \ldots, \alpha_{2^k-1}\} \in C, \beta \in \mathbb{F}_2^n \right\}.$$
New Construction for Constant Weight Codes

Theorem

If C is an $[n, M, d = 2t, k]$ code then C of Construction COS is a $(2^n, 2^{n-k}M, 2^{k+1} - 2^{k-t+1}, 2^k)$ code.

Example

Let C be and an $[n, \frac{(2^n-1)(2^n-1-1)}{3}, 2, 2]$ code which consists of all 2-dimensional subspaces of \mathbb{F}_2^n. C is a $(2^n, \frac{(2^n-1)(2^n-1-1)2^{n-2}}{3}, 4, 4)$ code forming the codewords of weight four in the extended Hamming code of length 2^n, i.e., a Steiner system $S(3, 4, 2^n)$.

Example

Let C be an $[n, 2^n - 1, 2, n - 1]$ code (all $(n-1)$-dimensional subspaces of \mathbb{F}_2^n). C is a $(2^n, 2^{n+1} - 2, 2^{n-1}, 2^{n-1})$. If we join to C the allone and the allzero codewords then the formed code is a Hadamard code (a Hadamard matrix and its complement).
Definition

$A(n, d, w)$ is the maximum size of a binary constant weight code of length n, weight w, and minimum Hamming distance d.

Theorem (Johnson)

If $n \geq w > 0$ then

$$A(n, d, w) \leq \left\lfloor \frac{n}{w} A(n - 1, d, w - 1) \right\rfloor.$$
New Construction for Constant Weight Codes

Theorem (Agrell, Vardy, Zeger)

If $b > 0$ then

$$A(n, 2\delta, w) \leq \left\lfloor \frac{\delta}{b} \right\rfloor,$$

where

$$b = \delta - \frac{w(n - w)}{n} + \frac{n}{M^2} \left\{ \frac{Mw}{n} \right\} \left\{ \frac{M(n - w)}{n} \right\}.$$

$$M = A(n, 2\delta, w)$$

$$\{x\} = x - \lfloor x \rfloor.$$
New Construction for Constant Weight Codes

Theorem

\[A(2^{2m-1} - 1, 2^{m+1} - 4, 2^m - 1) = 2^m + 1. \]

\[A(2^{2m-1}, 2^{m+1} - 4, 2^m) = 2^{2m-1} + 2^{m-1}. \]

Proof.

The upper bound \(A(2^{2m-1} - 1, 2^{m+1} - 4, 2^m - 1) \leq 2^m + 1 \) is a direct application of AVZ Theorem. Using this bound in Johnson Theorem we obtain \(A(2^{2m-1}, 2^{m+1} - 4, 2^m) \leq 2^{2m-1} + 2^{m-1} \).

By applying Construction COS on a \([2m - 1, 2^m + 1, 2m - 2, m]\) code we obtain a \((2^{2m-1}, 2^{2m-1} + 2^{m-1}, 2^{m+1} - 4, 2^m)\) code. Hence, \(A(2^{2m-1}, 2^{m+1} - 4, 2^m) \geq 2^{2m-1} + 2^{m-1} \) and thus \(A(2^{2m-1}, 2^{m+1} - 4, 2^m) = 2^{2m-1} + 2^{m-1} \). By shortening the \((2^{2m-1}, 2^{2m-1} + 2^{m-1}, 2^{m+1} - 4, 2^m)\) code we obtain a \((2^{2m-1} - 1, 2^m + 1, 2^{m+1} - 4, 2^m - 1)\) code and hence \(A(2^{2m-1} - 1, 2^{m+1} - 4, 2^m - 1) = 2^m + 1. \)
New Construction for Constant Weight Codes

Theorem

If a Steiner Structure $S_2[2, k, n]$ exists then a Steiner system $S(3, 2^k, 2^n)$ exists.

Theorem

If a Steiner Structure $S_2[2, 3, 7]$ exists then a Steiner system $S(3, 8, 128)$ exists.
Definitions for q-Covering Designs

Definition

A q-covering design $C_q[n, k, r]$ is a collection S of elements from $G_q(n, k)$ such that each element of $G_q(n, r)$ is contained in at least one element of S.

Definition

A q-Turán design $T_q[n, k, r]$ is a collection S of elements from $G_q(n, r)$ such that each element of $G_q(n, k)$ contains at least one element from S.
Definitions for q-Covering designs

Definition

The q-covering number $C_q(n, k, r)$ is the minimum size of a q-covering design $C_q[n, k, r]$.

Definition

The q-Turán number $T_q(n, k, r)$ is the minimum size of a q-Turán design $T_q[n, k, r]$.
Basic Bounds on q-Covering numbers

Theorem

S is a q-covering design $C_q[n, k, r]$ if and only if S^\perp is a q-Turán design $T_q[n, n - r, n - k]$.

Corollary

$C_q(n, k, r) = T_q(n, n - r, n - k)$.
Basic Bounds on q-Covering numbers

Theorem

$$C_q(n, k, r) \geq \binom{n}{k}^q \binom{k}{r}^q$$

with equality holds if and only if a Steiner structure $S_q[r, k, n]$ exists.

Theorem

$$T_q(n, k, r) \leq \binom{n - k + r}{r}^q$$

Corollary

$$C_q(n, k, r) = T_q(n, n - r, n - k) \leq \binom{n - k + r}{r}^q$$
Optimal q-Covering Designs

Theorem

$C_q(n, k, 1) = T_q(n, n-1, n-k) = |S_q[1, k, n]| = \frac{q^{n-1}}{q^k-1}$, whenever k divides n.

Theorem

If $1 \leq k \leq n$, then $C_q(n, k, 1) = \left\lceil \frac{q^{n-1}}{q^k-1} \right\rceil$.

Theorem

If $1 \leq k \leq n-1$, then $C_q(n, n-1, k) = \frac{q^{k+1}-1}{q-1}$.
Upper Bounds on the Size of q-Covering Designs

Theorem (Recursive Construction)

$$C_q(n, k, r) \leq q^{n-k}C_q(n-1, k-1, r-1) + C_q(n-1, k, r).$$

Proof.

We represent \mathbb{F}_q^n by $\{(\alpha, \beta) : \alpha \in \mathbb{F}_{q}^{n-1}, \beta \in \mathbb{F}_q\}$. Let S_1 be a q-covering design $C_q[n-1, k-1, r-1]$ and S_2 be a q-covering design $C_q[n-1, k, r]$. We form a set S as follows:

- For each subspace $P = \{0, \alpha_1, \ldots, \alpha_{q^{k-1}-1}\} \in S_1$ let $P_1 = P, P_2, \ldots, P_{q^{n-k}}$ be the disjoint cosets of P in \mathbb{F}_q^{n-1}. Let $\beta_0 = 0, \beta_1, \ldots, \beta_{q^{n-k}}$ be any q^{n-k} coset representatives, i.e., $\beta_i \in P_i, 1 \leq i \leq q^{n-k}$. For each $1 \leq i \leq q^{n-k}$ we form the subspace $\langle \{(\alpha_1, 0), \ldots, (\alpha_{q^{k-1}-1}, 0), (\beta_i, 1)\} \rangle$ in S.

- For each subspace $\{0, \alpha_1, \ldots, \alpha_{q^{k-1}}\} \in S_2$ the subspace $\{(0, 0), (\alpha_1, 0), \ldots, (\alpha_{q^{k-1}}, 0)\}$ is formed in S.

S is a q-covering design $C_q[n, k, r]$ and the theorem follows.

Tuvi Etzion - Computer Science Department, Technion

Codes and Designs in the Grassmann Scheme
Lower Bounds on the Size of q-Covering Designs

Theorem

\[C_q(n, k, r) \geq \left\lfloor \frac{q^{n-1}}{q^{k-1}} C_q(n - 1, k - 1, r - 1) \right\rfloor. \]

Corollary

\[C_q(n, k, r) \geq \left\lfloor \frac{q^{n-1}}{q^{k-1}} \left\lfloor \frac{q^{n-1}}{q^{k-1}} \cdots \left\lfloor \frac{q^{n+1-r-1}}{q^{k+1-r-1}} \right\rfloor \cdots \right\rfloor \right\rfloor \geq \begin{pmatrix} n \\ r \\ k \quad r \end{pmatrix}_q. \]

Theorem

\[T_q(n, r + 1, r) \geq \frac{(q^{n-r-1})(q-1)}{(q^{r-1})^2} \begin{pmatrix} n \\ r - 1 \end{pmatrix}_q. \]

Corollary

\[C_q(n, k, k - 1) \geq \frac{(q^{k-1})(q-1)}{(q^{n-k-1})^2} \begin{pmatrix} n \\ k + 1 \end{pmatrix}_q. \]
Some Specific Bounds

Theorem
\[C_2(5, 3, 2) = 27. \ (compared \ to \ C_2(5, 3, 2) \geq 23 \ by \ previous \ theorem) . \]

Theorem
\[381 \leq C_2(7, 3, 2) \leq 399. \]

Theorem
\[304 \leq A_2(7, 4, 3) \leq 381. \]
THANK YOU