On the weight distribution of certain trace codes

Yves Edel

Department of Pure Mathematics and Computer Algebra Ghent University

ALCOMA10

Thurnau, 16 April 2010

The * Construction (MacWilliams Sloane)

Let \mathcal{A} be an irreducible cyclic $\left[u, r, d_{1}\right]_{q}$ and \mathcal{B} a cyclic $\left[n, k, d_{2}\right]_{q^{r}}$
Let $\operatorname{gcd}(u, n)=1$, then $\mathcal{A} * \mathcal{B}$ is a cyclic $[u n, r k, d]_{q}, d \geq d_{1} d_{2}$, with codewords:

$$
\left(\operatorname{tr}_{r, 1}\left(\zeta^{1} c_{1}\right), \ldots, \operatorname{tr}_{r, 1}\left(\zeta^{u} c_{1}\right), \ldots, \operatorname{tr}_{r, 1}\left(\zeta^{1} c_{n}\right), \ldots, \operatorname{tr}_{r, 1}\left(\zeta^{u} c_{n}\right)\right),
$$

where $\left(c_{1}, \ldots, c_{n}\right) \in \mathcal{B}$ and ζ a primitive u-th root $\in \mathbb{F}_{q^{r}}$.
This is concatenated code with inner code \mathcal{A} and outer code \mathcal{B}.

$$
\phi: \mathbb{F}_{q^{r}} \rightarrow \mathcal{A}, \quad c \mapsto\left(\operatorname{tr}_{r, 1}\left(\zeta^{1} c\right), \ldots, \operatorname{tr}_{r, 1}\left(\zeta^{u} c\right)\right) \in \mathcal{A}
$$

The '* Construction', $\operatorname{gcd}(u, n)>1$

How to get cyclic codes $\mathcal{A} * \mathcal{B}$, with \mathcal{A} an irreducible cyclic code, if $\operatorname{gcd}(u, n)>1$?
Answer: \mathcal{B} needs to be a suitable constacyclic code (Jensen 1992).

Applications

\Rightarrow Use information on \mathcal{A}, \mathcal{B} to obtain information on $\mathcal{A} * \mathcal{B}$
\Leftarrow Use information on the q-ary cyclic code $\mathcal{A} * \mathcal{B}$ to obtain information on q^{r}-ary constacyclic code \mathcal{B}

Definitions

Let $A \subseteq \mathbb{Z},\left\{w_{1}, \ldots, w_{n}\right\}=W \subseteq \mathbb{F}_{q^{s}}^{*}$

- $\mathcal{P}_{s}(A):=\left\{\sum_{i \in A} a_{i} X^{i} \mid a_{i} \in \mathbb{F}_{q^{s}}\right\} \subseteq \mathbb{F}_{q^{s}}[X]$.
- Let $\mathcal{B}(A, W, s)$ the q^{s}-ary linear code generated by the words

$$
\left(f\left(w_{1}\right), \ldots, f\left(w_{n}\right)\right), \quad f \in \mathcal{P}_{s}(A)
$$

- Let $r \mid s$ and $\operatorname{tr}_{s, r}: \mathbb{F}_{q^{s}} \rightarrow \mathbb{F}_{q^{r}}$ the trace.

For a $\mathbb{F}_{q^{s}}$-ary linear code C define its trace code $\operatorname{tr}_{s, r}(C)$ as the $\mathbb{F}_{q^{r}}$-ary linear code generated by the words

$$
\operatorname{tr}_{s, r}(c):=\left(\ldots, \operatorname{tr}_{s, r}\left(c_{i}\right), \ldots\right), \quad c \in C
$$

Let $\mathcal{T}(A, W, s, r):=\operatorname{tr}_{s, r}(\mathcal{B}(A, W, s))$.

Definitions

Let $\operatorname{gcd}(N, q)=1$. Define

- The q-cyclotomic coset (modulo N) of $i \in \mathbb{Z}$ as:

$$
Z_{q}^{N}(i):=\left\{i \cdot q^{j} \quad \bmod N \mid j \in \mathbb{Z}\right\} \subseteq \mathbb{Z}_{N}
$$

- The (q)-Galois closure of $A \subseteq \mathbb{Z}_{N}$ as:

$$
\operatorname{gc}_{q}^{N}(A):=\bigcup_{i \in A} Z_{q}^{N}(i) \subseteq \mathbb{Z}_{N}
$$

We call $A(q)$-Galois closed if $A=\mathrm{gc}_{q}^{N}(A)$.

- The complement of A in $\mathbb{Z}_{N}\left(\mathbb{Z}_{N} \backslash A\right)$ is denoted as \bar{A}.

Cyclic codes

Let $N \mid\left(q^{s}-1\right)$. Denote by $\langle\zeta\rangle=W_{N}$ multiplicative subgroup of order N in $\mathbb{F}_{q^{s}}^{*}$. The code $\mathcal{C}(A, N):=\mathcal{T}\left(A, W_{N}, s, r\right)^{\perp}$ is an cyclic $\mathbb{F}_{q^{r}}$-linear code, A is called the defining set of the cyclic code.

$$
\begin{aligned}
f=x^{a}: & \left(\zeta^{a}, \ldots, \zeta^{a(N-1)}, \zeta^{a N}\right) \\
f=\zeta^{a} x^{a}: & \left(\zeta^{2 a}, \ldots, \zeta^{a N}, \zeta^{a}\right)
\end{aligned}
$$

- $\mathcal{C}(A, N)=\mathcal{C}\left(\left(A \subset \mathbb{Z}_{N}\right), N\right)=\mathcal{C}\left(\operatorname{gc}_{q^{r}}^{N}(A), N\right)$
- $\left|\operatorname{gc}_{q^{r}}^{N}(A)\right|=\operatorname{dim}\left(\mathcal{T}\left(A, W_{N}, s, r\right)\right)=N-\operatorname{dim}(\mathcal{C}(A, N))$
- $B=-\overline{\mathrm{gc}_{q^{r}}^{N}(A)}$ is the defining set of the dual code.
- $\left\{\zeta^{a} \mid a \in \operatorname{gc}_{q^{r}}^{N}(A)\right\}$ are the zeros of $\mathcal{C}(A, N)$ and $\left\{\zeta^{-a} \mid a \in \operatorname{gc}_{q^{r}}^{N}(A)\right\}$ the nonzeros of $\mathcal{T}\left(A, W_{N}, s, r\right)$

Constacyclic codes

A $[n, k, d]_{q}$ code C is called γ-constacyclic if there is a common constant $\gamma \in \mathbb{F}_{q}$ such that

$$
\left(c_{1}, \ldots, c_{n}\right) \in C \Leftrightarrow\left(c_{2}, \ldots, c_{n}, \gamma c_{1}\right) \in C
$$

If $\gamma^{u}=1$, then the following code C^{\prime} is cyclic:

$$
C^{\prime}=\left\{\left(c, \gamma c, \ldots, \gamma^{u-1} c\right) \mid c \in C\right\}
$$

Especially the weight distribution of C is determined the one of C^{\prime}.

Characterization (Bierbrauer 2002)

Let $u \mid q-1$ and $u n=N \mid\left(q^{s}-1\right)$. It is equivalent:

- The class of of q-ary cyclic codes C of length N with the property that all nonzeros A of C are in the same coset modulo u.
- The class of q-ary γ-constacyclic codes of length n, for some γ of order u.

Constacyclic codes

Assume that $N=n u$ and the set A has the property that all $a \in A$ equal b modulo u. The code $\mathcal{B}\left(A, W_{N}, s\right)$ is generated by the words

$$
\left(\zeta^{a i} \mid 0 \leq i<N\right)
$$

Let $\beta:=\zeta^{n}$, a primitive element of W_{u}.
We have that the entry at coordinate $i+n$ is:

$$
\zeta^{a(i+n)}=\zeta^{a i} \zeta^{a n}=\zeta^{a i} \zeta^{(b+u v) n}=\zeta^{a i} \zeta^{b n} \zeta^{v N}=\beta^{b} \zeta^{a i}
$$

Let $R_{u}^{N}:=\left\{\zeta^{i} \mid 0 \leq i<n\right\}$.
$\mathcal{B}\left(A, R_{u}^{N}, s\right)$ is γ-constacyclic where $\gamma=\beta^{b}$,
If $u \mid q^{r}-1$ for some $r \mid s$ then $\gamma \in \mathbb{F}_{q^{r}}$ and hence also
$\mathcal{T}\left(A, R_{u}^{N}, s, r\right)$ is γ-constacyclic.

$\mathcal{T}\left(A, W_{N}, s, 1\right)$ for $u \nmid(q-1)$

Assume all elements of A are in the same coset modulo u but $u \nmid(q-1)$, then $\mathcal{T}\left(A, R_{u}^{N}, s, 1\right)=\ldots$?

Then there is some $r \mid s$, s.t. $u \mid\left(q^{r}-1\right)$ and

$$
\operatorname{tr}_{s, 1}\left(\left(c, \gamma c, \ldots, \gamma^{u-1} c\right)\right)=\operatorname{tr}_{r, 1}\left(\left(\operatorname{tr}_{s, r}(c), \gamma \operatorname{tr}_{s, r}(c), \ldots, \gamma^{u-1} \operatorname{tr}_{s, r}(c)\right)\right)
$$

$\mathcal{T}\left(A, W_{N}, s, 1\right)=\mathcal{T}\left(\{b\}, W_{u}, r, 1\right) * \mathcal{T}\left(A, R_{u}^{N}, s, r\right)$

If $v=(u, q-1)$
$\mathcal{T}\left(A, R_{v}^{N}, s, 1\right)=\mathcal{T}\left(\{b\}, R_{v}^{u}, r, 1\right) * \mathcal{T}\left(A, R_{u}^{N}, s, r\right)$

Characterization

Let $N=n u \mid\left(q^{s}-1\right)$ and $R(b)=\left\{a \in \mathbb{Z}_{N} \mid a=b \bmod u\right\}$. $\mathcal{T}\left(A, W_{N}, s, 1\right)$ is decomposable via the $*$ construction in a constacyclic code and a irreducible cyclic code of length u iff there is some b such that

$$
\begin{equation*}
Z_{q}^{N}(a) \cap R(b) \neq \emptyset \text { for all } a \in A \tag{1}
\end{equation*}
$$

Then

$$
\mathcal{T}\left(A, W_{N}, s, 1\right)=\mathcal{T}\left(\{b\}, W_{u}, r, 1\right) * \mathcal{T}\left(\mathrm{gc}_{q}^{N}(A) \cap R(b), R_{u}^{N}, s, r\right)
$$

An alternative characterization of Equation 1 is that every q-cyclotomic coset of $\mathrm{gc}_{q}^{N}(A)$ has to contain one q^{r}-cyclotomic coset of $R(b)$.
$N=u n, \operatorname{gcd}(u, n)=1$
R_{u}^{N} is a representative system of W_{N} modulo W_{u}, i.e.

$$
W_{N}=W_{u} R_{u}^{N}:=\left\{w a \mid w \in W_{u}, a \in R_{u}^{N}\right\} \text { and } W_{u} \cap R_{u}^{N}=\{1\}
$$

If $\operatorname{gcd}(u, n)=1$ then also

$$
W_{N}=W_{u} W_{n}:=\left\{w a \mid w \in W_{u}, a \in W_{n}\right\} \text { and } W_{u} \cap W_{n}=\{1\}
$$

and hence up to permutation of coordinates, we have

$$
\begin{aligned}
& \mathcal{T}\left(\{b\}, W_{u}, r, 1\right) * \mathcal{T}\left(A, R_{u}^{N}, s, r\right) \\
= & \mathcal{T}\left(A, W_{N}, s, 1\right) \\
= & \mathcal{T}\left(\{b\}, W_{u}, r, 1\right) * \mathcal{T}\left(A, W_{n}, s, r\right)
\end{aligned}
$$

so this code can be decomposed also in cyclic codes which gives the original $*$-construction.

Let $N=u n\left|\left(q^{s}-1\right), u\right|\left(q^{r}-1\right), r$ minimal with $r \mid s$.
Let $A \subset \mathbb{Z}_{N}$ with $b=a \bmod u$ for all $a \in A$.

$$
\begin{aligned}
& a_{i}=\left|\left\{c \in \mathcal{T}\left(A, W_{N}, s, 1\right) \mid w t(c)=i\right\}\right| \\
& A_{i}=\left|\left\{c \in \mathcal{T}\left(A, R_{u}^{N}, s, r\right) \mid w t(c)=i\right\}\right|
\end{aligned}
$$

Lemma

Let $\operatorname{gcd}\left(q-1,\left(q^{r}-1\right) /(q-1)\right)=1, v:=\operatorname{gcd}(q-1, u)$ and $u=v\left(q^{r}-1\right) /(q-1)$. Let $\operatorname{gcd}\left(b, q^{r}-1\right)=1$. It is

$$
A_{i}=a_{i v q r-1}
$$

For binary cyclic codes the condition simplifies to $u=2^{r}-1, \operatorname{gcd}\left(b, q^{r}-1\right)=1$.

This holds e.g for every quaternary constacyclic code where the common modulus $b \neq 0$.

Under the conditions of the corollary the inner code of the concatenation, $\mathcal{T}\left(\{b\}, W_{u}, r, 1\right)$, consists of v copies of the Simplex code.

The condition ensures 1 . that the Simplex code is cyclic and 2. that the inner code consists of v copies of the Simplex code.
The simplex code is the constacyclic code $\mathcal{T}\left(\{1\}, R_{q-1}^{q^{r}-1}, r, 1\right)$. If $\operatorname{gcd}\left(b, q^{r}-1\right)=1$ this code is equivalent to $\mathcal{T}\left(\{b\}, R_{q-1}^{q^{r}-1}, r, 1\right)$. As $\operatorname{gcd}\left(q-1,\left(q^{r}-1\right) /(q-1)\right)=1$ this code is isomorphic to the cyclic code $\mathcal{T}\left(\{b\}, W_{\frac{q^{r}-1}{q-1}}, r, 1\right)$.

As $u=v \frac{q^{r}-1}{q-1}$ with $v \mid(q-1)$ The inner code $\mathcal{T}\left(\{b\}, W_{u}, r, 1\right)$ equals $\mathcal{T}\left(\{*\}, W_{v}, 1,1\right) * \mathcal{T}\left(\{b\}, R_{v}^{u}, r, 1\right)$
Now $\operatorname{gcd}\left(v, \frac{q^{r}-1}{q-1}\right)=1$ as $\operatorname{gcd}\left(q-1,\left(q^{r}-1\right) /(q-1)\right)=1$ by assumption. Hence $\mathcal{T}\left(\{b\}, R_{v}^{u}, r, 1\right)$ is isomorphic to the cyclic code, which is isomorphic to the simplex code $\mathcal{T}\left(\{b\}, W_{\frac{q-1}{q-1}} r, 1\right)$
Conclusion the inner code is a copy of v simplex codes.

Kloosterman Codes

The Kloosterman code or dual Mélas code is the binary primitive cyclic code of length $2^{s}-1$ and dimension $2 s$ and nonzeros $\{-1,1\}$, i.e. $\mathcal{T}\left(\{-1,1\}, W_{2^{s}-1}, s, 1\right)$.

The code is a composition if there is some $r \mid s$ such that $\left(Z_{2}(-1) \bmod \left(2^{r}-1\right)\right) \cap\left(Z_{2}(1) \bmod \left(2^{r}-1\right)\right) \neq\{0\}$ So if $\left(2^{r}-1\right)\left|\left(2^{j}+1\right) \Leftrightarrow\left(2^{r}-1\right)\right|\left(2^{(j \bmod r)}+1\right)$ for some j, i.e. it has to be $r=2, j=1 \bmod 2$.
I.e. the Kloosterman Code decomposes ("only") in a quaternary constacyclic code with $A=\{-2,1\}$ and $s=2 t$.

This constacyclic code is the dual of the two-error correcting code of Dumer Zinoviev (1978).

The distance of the Kloosterman code is $2 \cdot 4^{t-1}-2^{t}$

Corollary

$\mathcal{T}\left(\{-2,1\}, R_{3}^{2^{2 t}-1}, 2 t, 2\right)$, the dual of the two-error correcting code of Dumer Zinoviev is a

$$
\left[\frac{\left(2^{t}-1\right)\left(2^{t}+1\right)}{3}, 2 t, 4^{t-1}-2^{t-1}\right]_{4}
$$

The smallest cases are $[21,6,12]_{4},[85,8,56]_{4},[341,10,240]_{4}$.

The dual Zetterberg code

The dual Zetterberg code is a binary irreducible cyclic code of length $2^{t}+1$, with nonzero $\{1\}$ i.e. $\mathcal{T}\left(\{1\}, W_{2^{t}+1}, s, 1\right)$. The $2^{t}+1$-roots of unity are in \mathbb{F}_{2}^{s} with $s=2 t$.

The "common modulus condition" is empty. The code is decomposeable if there is some $r \mid s$, s.t. $2^{r}-1 \mid 2^{t}+1$. As before this implies $r=2$ and $t \bmod 2=1$.

The dual Zetterberg code decomposes ("only") for t odd in a quaternary constacyclic code: $\mathcal{T}\left(\{1\}, R_{3}^{2^{t}+1}, s, 1\right)$, this is the dual of the two error correcting code of Gevorkyan, Avetisyan and Tigranyan (1975)

The distance d of the dual Zetterberg code is $d=\left\lceil\frac{q+1}{2}-\sqrt{q}\right\rceil$.

Lemma

$\mathcal{T}\left(\{1\}, R_{3}^{2^{t}+1}, s, 2\right)$, the dual of the two error correcting code of Gevorkyan, Avetisyan and Tigranyan, is a

$$
\left[\left(2^{t}+1\right) / 3, t, d\right]_{4}, \text { where } d=\left\lceil\frac{q+1-2 \sqrt{q}}{4}\right\rceil
$$

The smallest cases are $[11,5,6]_{4},[43,7,27]_{4},[171,9,117]_{4}$.

On the weight distribution of the Kloosterman and dual Zetterberg Code

The weight distribution of both codes were determined (using the Hecke-operator) by Schoof and v.d.Vlugt (91) (see also E.B. (04)).

Definition

Let $q=2^{s}$. For $v \in \mathbb{F}_{q}^{*}$ let p_{v} be the number of $x \in \mathbb{F}_{q}^{*}$ such that

$$
\operatorname{tr}_{s, 1}(x)=\operatorname{tr}_{s, 1}(v / x)=1
$$

Also let m_{i} be the number of v such that $p_{v}=i$.

Consider the curve

$$
y^{2}+y=x+\frac{v}{x}
$$

defined over \mathbb{F}_{q}. The homogeneous equation is

$$
F(X, Y, Z)=X Y^{2}+X Y Z+X^{2} Z+v Z^{3}=0
$$

The curve is smooth. As the homogeneous polynomial has degree 3 the genus is $\binom{3-1}{2}=1$, so we do have an elliptic curve.
$F(X, Y, 0)=X Y^{2}$. So there are two points at infinity, $(1: 0: 0)$ and $(0: 1: 0)$. Point $(0: 1: 0)$ is the only one with $X=0$.

For the other points work with the affine equation. Each x such that $\operatorname{tr}_{s, 1}(x+v / x)=0$ yields precisely two rational points of the curve.

The number N of rational points is

$$
N=2+2\left(2 p_{v}-1\right)=4 p_{v}
$$

By the Hasse inequality

$$
q+1-2 \sqrt{q}<4 p_{v}<q+1+2 \sqrt{q}
$$

(the inequality is strict as, if f is odd the bounds are not integer, if f even they are $1 \bmod (2))$, hence

$$
\frac{q+1-2 \sqrt{q}}{4}<p_{v}<\frac{q+1+2 \sqrt{q}}{4}
$$

Kloosterman codes

The codeword $c(a, b)$ where $a, b \in \mathbb{F}_{q}$, of the Kloosterman code has entry

$$
w t(c(1, v))=q-2 p_{v}
$$

All codewords of the Kloosterman code have even weight. The weight distribution for nonzero weights is given by

$$
\begin{aligned}
a_{2 j} & =(q-1) m_{q / 2-j}, \text { for } j \neq q / 4, \text { and } \\
a_{q / 2} & =(q-1)\left(m_{q / 4}+2\right) .
\end{aligned}
$$

The (even) minimum distance d is bounded by $d>\frac{q-1}{2}-\sqrt{q}$.

Dual Zetterberg codes

Lemma

Let $s=2 t$ and $q=2^{t}$. Let $0 \neq \alpha \in \mathbb{F}_{q}$. The following are equivalent:

- There exists $x \in W_{q+1} \backslash\{1\}$ such that $\operatorname{tr}_{s, t}(x)=\alpha$
- $\operatorname{tr}_{t, 1}(1 / \alpha)=1$.

A word of the dual Zetterberg code $\mathcal{T}\left(\{1\}, W_{q+1}, s, 1\right)$ is $c(u)=\left(\operatorname{tr}_{s, 1}(u x) \mid x \in W_{q+1}\right)$ where $u \in \mathbb{F}_{q^{2}}$.
$W_{q+1} \cap \mathbb{F}_{q}=1$, so any $v \in \mathbb{F}_{q^{2}}^{*}$ can be written uniquely in the form $v=u x$, with $u \in \mathbb{F}_{q}^{*}$ and $x \in W_{q+1}$.

$$
w t(c(v))=w t(c(u x))=w t(c(u))
$$

As $u \in \mathbb{F}_{q}^{*}$ it is $\operatorname{tr}_{s, 1}(u x)=\operatorname{tr}_{t, 1}(u \alpha)$, where $\alpha=\operatorname{tr}_{s, t}(x)$.
For $x=1$ the entry $c(u)_{x}=\operatorname{tr}_{s, 1}(u x)=0$.
So $w t(c(u))$ equals the number of $x \in W_{q+1} \backslash\{1\}$ with $\operatorname{tr}_{t, 1}(u \alpha)=1$. By the lemma then $\operatorname{tr}_{t, 1}(1 / \alpha)=1$.

There are $p_{1 / u}$ elements $\alpha \in \mathbb{F}_{q}$ with $\operatorname{tr}_{t, 1}(1 / \alpha)=\operatorname{tr}_{t, 1}(u \alpha)=1$.
Each such α contributes 2 coordinates x. We conclude that for $v=x / u$ the weight $w t(c(v))=2 p_{u}$.

All weights of the dual Zetterberg code are even, and its nonzero weights are

$$
a_{2 i}=(q+1) m_{i} \text { for } i>0 .
$$

The (even) minimum distance d is bounded by $d>\frac{q+1}{2}-\sqrt{q}$.

References

围 J．Bierbrauer．The theory of cyclic codes and a generalization to additive codes．Designs，Codes and Cryptography， 25：189－206， 2002.

目 I．Dumer．Nonbinary double－error－correcting codes designed by means of algebraic verieties．IEEE Transactions on Information Theory，41：1657－1666， 1995.

國 I．Dumer and V．A．Zinoviev．Some new maximal codes over GF（4）．Probl．Peredach．Inform（in Russian），14（3）：24－34， 1978．English translation in Problems of Information Transmission，14（3）：174－181， 1978.
（i）Y．Edel and J．Bierbrauer．Caps of order $3 q^{2}$ in affine 4－space in characteristic 2．Finite Fields and their Applications， 10：168－182， 2004.

References

圊 D．Gevorkyan，A．Avetisyan，and G．Tigranyan．On the structure of two－error－correcting in Hamming metric over Galois fields．Computational Techniques，Kuibyshev（in Russian），3：19－21， 1975.

围 J．M．Jensen．Cyclic concatenated codes with constacyclic outer codes．IEEE Trans．Inf．Theory，38（3）：950－959， 1992.

E．J．MacWilliams and N．J．A．Sloane．The theory of error－correcting codes．North－Holland Publishing Co．， Amsterdam， 1977.

囯 R．Schoof and M．van der Vlugt．Hecke operators and the weight distribution of certain codes．Journal of Combinatorial Theory A，57（2）：163－186， 1991.

