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Motivation
00

The * Construction (MacWilliams Sloane)

Let A be an irreducible cyclic [u, r, di]q and B a cyclic [n, k, da] g

Let gcd(u, n) =1, then A B is a cyclic [un, rk,d],, d > did>,
with codewords:

(trr,l(C1C1)7 000 ,tl"nl(CuCl), 000 ,trnl(ClCn), 000 ,tl"nl(CuCn)) s J

where (c1, ..., cp) € B and ¢ a primitive u-th root € Fgr.

This is concatenated code with inner code A and outer code B.

¢:Fgr = A, cr (trea(Cc),... trr1(¢%)) € A
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The '* Construction’, gcd(u, n) > 1

How to get cyclic codes A x BB, with A an irreducible cyclic code, if
ged(u, n) > 17
Answer: B needs to be a suitable constacyclic code (Jensen 1992).

Applications
= Use information on A, B to obtain information on A * B

< Use information on the g-ary cyclic code A * B to obtain
information on g"-ary constacyclic code BB




Decomposition of cyclic codes
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Definitions

Let AC Z, {Wl,...,w,,}:WQFZS

@ Let B(A, W,s) the g°-ary linear code generated by the words

(F(wy),...,f(wn)), f€Ps(A)

@ Let r|s and trs, : Fgs — Fgr the trace.
For a Fgs-ary linear code C define its trace code tr, (C) as
the Fgr-ary linear code generated by the words

trs(c) .= (..., trs((ci),...), ceC
Let T(A, W,s,r) = trs (B(A, W,s)).
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Definitions

Let gcd(N, g) = 1. Define
@ The g-cyclotomic coset (modulo N) of i € Z as:

zZ)(i):={i-¢ mod N|jeZ}CZy

@ The (g)-Galois closure of A C Zy as:
() = | Z20) € 2
€A
We call A (g)-Galois closed if A= gcQ’(A).
@ The complement of Ain Zy (Zy \ A) is denoted as A.
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Cyclic codes

Let N | (¢° — 1). Denote by (¢) = Wy multiplicative subgroup of
order N in Fs. The code C(A, N) := T (A, Wy, s, r)* is an cyclic
F4r-linear code, A is called the defining set of the cyclic code.

f=x7: (Ca> ) Ca(N_1)7 CaN)
=0t (M0

o C(A.N) = C((A C Zn). N) = C(acl(A), N)

° \gcqr(A)| dim(7 (A, Wn,s,r)) = N —dim(C(A, N))
e B= ( ) is the defining set of the dual code.

o {(?lac g N.(A)} are the zeros of C(A, N) and

{(T?|ac€ gcq,( )} the nonzeros of T (A, Wy, s, r)
° ...




Constacyclic codes
A [n, k,d]q code C is called y-constacyclic if there is a common
constant v € g such that
(c1y...,¢n) €C & (cpy...,cny701) € C
If v¥ = 1, then the following code C’ is cyclic:
C'={(c,v¢,...,v" L) |ce C}
Especially the weight distribution of C is determined the one of C’.
Characterization (Bierbrauer 2002)

Let u| g—1and un= N|(g°—1). It is equivalent:

@ The class of of g-ary cyclic codes C of length N with the
property that all nonzeros A of C are in the same coset
modulo u.

@ The class of g-ary y-constacyclic codes of length n, for some
~ of order u.




Constacyclic codes

Assume that N = nu and the set A has the property that all a € A
equal b modulo u. The code B(A, Wy, s) is generated by the words

(¢*0 < i< N)
Let 8 := (", a primitive element of W,,.
We have that the entry at coordinate i + n is:
¢ali+n) _ caican _ caip(buv)n _ caipbnevN _ gb i
Let RN .= {¢'|0<i<n}).
B(A, RN s) is y-constacyclic where v = 3°,

If u| q"—1 for some r | s then v € Fyr and hence also
T (A, RN s, r) is y-constacyclic.
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T(A Wy,s,1) for ut(g—1)

Assume all elements of A are in the same coset modulo u but
uf(q—1), then T(A RN s;1)= ... ?

Then there is some r | s, s.t. v | (g"—1) and

trs1 ((c,'yc, e ,7“_1c)) =tr.1 ((tr57,(c),'ytrs,r(c), e ,7”_1tr57,(c)))

T(A Wn,s,1) =T({b}, W,,r,1)x T (A, RL’,V, s, r) J

If v=(uqg-1)

T(A R}, s,1) = T({b}, RY, r,1) x T(A, R}, 5, 1) )
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Characterization

Let N=nu|(¢°—1)and R(b) ={a€Zn|a=b mod u}.

T (A, Wy, s,1) is decomposable via the * construction in a
constacyclic code and a irreducible cyclic code of length v iff there
is some b such that

Z)(a)N R(b) # 0 for all a € A (1)
Then

T(A, Wh,s,1) = T({b}, Wa, r,1) = T(gel (A) N R(b), R, s, 1)

An alternative characterization of Equation 1 is that every
g-cyclotomic coset of gcg’(A) has to contain one g"-cyclotomic
coset of R(b).
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N = un, gcd(u,n) =1
RN is a representative system of Wy modulo W,,, i.e.

Wy = W,RN .= {walw € W,,ac RV} and W, n RV = {1}

If gcd(u, n) =1 then also
Wy = W, W, .= {walw € W,,a € W,} and W, N W, = {1}
and hence up to permutation of coordinates, we have

T({b}7 WLH r, 1) * T(A, RLIJV,S, r)
— T(A, WN7S,1)
= T({b}, Wy, r, 1)« T(A, Wp,s,r)

so this code can be decomposed also in cyclic codes which gives
the original *-construction.



Let N=un|(¢°—1), u|(q"—1), r minimal with r | s.
Let A C Zpy with b=a mod u for all a € A.

aj=|{c € T(A Wp,s,1) | wt(c) =i}
Ai={c e T(A, RL’,V,S, r) | wt(c) = i}

Lemma

Let gcd(g —1,(¢" —1)/(g—1)) =1, v :=gcd(qg — 1, u) and
u=v(g"—1)/(g—1). Let gcd(b,¢" —1)=1. Itis

A,-:a

I‘Vqr—l

For binary cyclic codes the condition simplifies to
u=2"—1,gecd(b,g" —1)=1.

This holds e.g for every quaternary constacyclic code where the
common modulus b # 0.
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Under the conditions of the corollary the inner code of the

concatenation, 7 ({b}, Wy, r,1), consists of v copies of the
Simplex code.

The condition ensures 1. that the Simplex code is cyclic and 2.
that the inner code consists of v copies of the Simplex code.

The simplex code is the constacyclic code T({1}, Rjr__ll, r,1).

If ged(b,q" — 1) = 1 this code is equivalent to T ({b}, Rgr__ll, r,1).
As gcd(g — 1,(¢g" — 1)/(g — 1)) = 1 this code is isomorphic to the
cyclic code T({b}, Wg_1,r,1).

q—1

As u= v% with v | (g — 1) The inner code T ({b}, W,, r,1)
equals T({*}, W,,1,1) « T({b},RY,r,1)

Now ged(v, ) = 1 as ged(q —1,(¢" —1)/(g — 1)) = 1 by

assumption. Hence 7 ({b}, R/, r,1) is isomorphic to the cyclic

code, which is isomorphic to the simplex code T ({b}, Wg—_1,r,1)
qg—1

Conclusion the inner code is a copy of v simplex codes.
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Kloosterman Codes

The Kloosterman code or dual Mélas code is the binary primitive
cyclic code of length 2° — 1 and dimension 2s and nonzeros
{=1,1}, i.e. T({-1,1}, Was_1,s,1).

The code is a composition if there is some r | s such that
(Z2(=1) mod (2" —1)) N (Z(1) mod (2" - 1)) # {0}

Soif (2" —1)| (¥ 4+ 1)< (2r —1) | (20 mod 1) 4 1) for some j,
i.e. ithastober=2,j=1 mod 2.

l.e. the Kloosterman Code decomposes ("only”) in a quaternary
constacyclic code with A= {—2,1} and s = 2t.

This constacyclic code is the dual of the two-error correcting code
of Dumer Zinoviev (1978).
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The distance of the Kloosterman code is 2 - 411 — 2t

Corollary

T({-2,1}, R322t_1, 2t,2), the dual of the two-error correcting code
of Dumer Zinoviev is a

(2 — 1)(2¢ + 1)
[ 3

,2t, 4t—1 o 2t—1]4

The smallest cases are [21,6,12]4, [85,8,56]s, [341, 10, 240]4.
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The dual Zetterberg code

The dual Zetterberg code is a binary irreducible cyclic code of
length 2 + 1, with nonzero {1} i.e. T ({1}, Wat 1,s,1). The
2" + 1-roots of unity are in F5 with s = 2t.

The "common modulus condition” is empty. The code is
decomposeable if there is some r|s , s.t. 2" — 1| 2f 4+ 1. As before
this implies r =2 and t mod 2 = 1.

The dual Zetterberg code decomposes ("only") for t odd in a
quaternary constacyclic code: T ({1}, R32t+1, s, 1), this is the dual
of the two error correcting code of Gevorkyan, Avetisyan and
Tigranyan (1975)
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The distance d of the dual Zetterberg code is d = [94% — /q].

Lemma

T({1}, R§t+1, s,2), the dual of the two error correcting code of
Gevorkyan, Avetisyan and Tigranyan, is a

qg+1-2,/q

[(2F +1)/3,t,d]s, where d = [ q

|

The smallest cases are [11,5,6]4, [43,7,27]4, [171,9,117]4.



On the weight distribution of the Kloosterman and
dual Zetterberg Code

The weight distribution of both codes were determined (using the
Hecke-operator) by Schoof and v.d.Vlugt (91) (see also E.B. (04)).

Definition

Let g = 2°. For v € IFj, let p, be the number of x € I such that

trs1(x) = trs1(v/x) = 1.

Also let m; be the number of v such that p, = /.

Consider the curve g
Yty =x+-
X
defined over F;. The homogeneous equation is
F(X,Y,Z)=XY? 4+ XYZ +X?Z +vZ® =0.
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The curve is smooth. As the homogeneous polynomial has degree

3 the genus is (*,") = 1, so we do have an elliptic curve.

F(X,Y,0) = XY2. So there are two points at infinity, (1:0: 0)
and (0:1:0). Point (0:1:0) is the only one with X = 0.

For the other points work with the affine equation. Each x such
that trs 1(x + v/x) = 0 yields precisely two rational points of the
curve.

The number N of rational points is
N=2+2(2p, —1)=4p,.
By the Hasse inequality
g+1-2/g<4p, <q+1+2\/q

(the inequality is strict as, if f is odd the bounds are not integer, if
f even they are 1 mod (2)), hence

+1-2 +1+2
qf\/a<pv<qf\/a'



Kloosterman codes

The codeword c(a, b) where a, b € Fy, of the Kloosterman code
has entry
c(a, b)x = trsi(ax + b/x)

g/t(c(a, 0)) = wt(c(0, b)) = q/2 and wt(c(a, b)) = wt(c(1, ab)).
o:

wt(c(1,v)) =q—2p,.

All codewords of the Kloosterman code have even weight. The
weight distribution for nonzero weights is given by

aj = (q—1)mgp_j, forj# q/4, and
agre = (q—1)(mgss+2).

The (even) minimum distance d is bounded by d > ‘%1 — /4.




Dual Zetterberg codes

Lemma

Let s =2t and g = 2'. Let 0 # o € F. The following are
equivalent:

@ There exists x € Wyi1 \ {1} such that trs+(x) = «
o try1(l/a) = 1.

A word of the dual Zetterberg code 7 ({1}, Wg41,s,1) is
c(u) = (trsa(ux) | x € Wgy1) where u € Fp.

Wg+1NFy =1, so any v € F¥, can be written uniquely in the
form v = ux, with u € IE‘Z and x € Wg1.
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As u € Fy it is trs1(ux) = tre1(ua), where a = trs +(x).
For x = 1 the entry c(u)x = trs1(ux) = 0.

So wt(c(u)) equals the number of x € Wgy1 \ {1} with
tre 1(ua) = 1. By the lemma then try1(1/a) = 1.

There are p;/, elements a € Fg with tre1(1/a) = tre1(va) = 1.
Each such a contributes 2 coordinates x. We conclude that for
v = x/u the weight wt(c(v)) = 2p,.

All weights of the dual Zetterberg code are even, and its nonzero
weights are
azi = (g + 1)m; for i > 0.

The (even) minimum distance d is bounded by d > %1 - /9.
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