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Recall
Substructures
Existence

Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

the set of elements of the geometry is the set of all totally
isotropic subsapces (or totally singular) of V (n + 1, q) with
relation to the form
incidence is symmterized containment
The rank of the polar space is the Witt index of the form.
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Recall
Substructures
Existence

Finite classical generalized quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry
S = (P,B, I) such that

(i) Each point is incident with 1 + t lines (t > 1) and two
distinct points are incident with at most one line.

(ii) Each line is incident with 1 + s points (s > 1) and two
distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x , then there
is a unique pair (y , M) ∈ P × B for which x I M I y I L.
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Recall
Substructures
Existence

Finite classical GQs: associated to sesquilinear or
quadratic forms of Witt index two.
Q−(5, q): set of points of PG(5, q) satisfying

g(X0, X1) + X2X3 + X4X5 = 0

where g(X0, X1) is an irreducible homogenous polynomial
of degree two.
H(3, q2): set of points of PG(3, q2) satisfying

X q+1
0 + X q+1

1 + X q+1
2 + X q+1

3 = 0
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Recall
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Q(4, q): set of points of PG(4, q) satisfying

X 2
0 + X1X2 + X3X4 = 0

Q(4, q)s are found as subquadrangle of Q−(5, q) by a
non-tangent hyperplane section.
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Some properties

Q−(5, q): order (q, q2)

H(3, q2): order (q2, q)

Q(4, q): order q (meaning: (q, q)).

Theorem

Q−(5, q) is isomorphic with the dual of H(3, q2).
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Spreads and ovoids

Definition
An ovoid of a GQ S is a set O of points of S such that every line
of S contains exactly one point of O.

Definition
A spread of a GQ S is a set B of lines of S such that every point
of S is contained exactly in one line of B.
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Partial ovoids and partial spreads

Definition
A partial ovoid of a GQ S is a set O of points of S such that
every line of S contains at most one point of S. A partial ovoid
is maximal if it cannot be extended to a larger partial ovoid.

Definition
A partial spread of a GQ S is a set B of lines of S such that
every point of S is contained in at most one line of B. A partial
spread is maximal if it cannot be extended to a larger partial
spread.
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numbers

Lemma
If S is a GQ of order (s, t), then an ovoid of S has size st + 1,
and a spread of S has size st + 1
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Theorem
Q−(5, q) has no ovoids

Corollary

H(3, q2) has no spreads
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An upper bound on the size

Theorem (DB, Klein, Metsch, Storme)

A partial spread of H(3, q2) has size at most q3+q+2
2 .
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|B| = q3 + 1− δ, h = δ(q2 + 1)

Compute the number of triples in the set

{(S1, S2, P)‖S1, S2 ∈ B, P ∈ S}

where the unique projective line on P meeting S1 and S2 is
a line of S.∑

xi = |B|, h = δ(q2 + 1)

lower bound for the number of elements in the set

δ(q2 + 1)|S|
(

|S|
q + 1

− 1
)
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S1, S2 ∈ B such that the number of triples (S1, S2, P) is maximal
(denote this number α). Use the lower bound to define α0

|B|(|B| − 1)α0 := δ(q2 + 1)|B|
(

|B|
q+1 − 1

)
it follows that α ≥ α0

For any two S1, S2 ∈ B there are (q2 + 1)(q2 − 1)
candidates to be a hole.
Any S ∈ B \ {S1, S2} kills q + 1 candidates, but at least α0
of these candidates are holes
(|B| − 2)(q + 1) + α0 ≤ q4 − 1
(q3 − 2δ − q)(q3 + q2 − δ)q ≤ 0.
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Examples of sizeO(q2)

An upper bound on the size

Theorem (DB, Klein, Metsch, Storme (2008))

A partial spread of H(3, q2) has size at most q3+q+2
2 .

Jan De Beule Partial spreads of H(3, q2)



university-logo

Introduction
Partial spreads of H(3, q2)

Examples of sizeO(q2)

Examples for q = 2, 3

Theorem (Dye)

There exists a maximal partial ovoid of Q−(5, 2) of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of H(3, 9) of size 16

Theorem (Cossidente)

There exists maximal partial spreads of H(3, q2) of size
(q + 1)2 for q odd.
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When equality holds

Corollary

If H(3, q2) has a spread of size q3+q+2
2 , then there exists a

symmetric 2− (v , k , λ) design, with v = q3+q+2
2 , k = q2 + 1,

λ = 2q.
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Computer results
More examples
Larger examples

The case q = 4

Exhaustive search:
no maximal partial spread exist with size in the interval
[26, . . . , 35],
we found all maximal partial spreads with size in
{23, 24, 25}

Jan De Beule Partial spreads of H(3, q2)



university-logo

Introduction
Partial spreads of H(3, q2)

Examples of sizeO(q2)

Computer results
More examples
Larger examples

The case q = 4

Exhaustive search:
no maximal partial spread exist with size in the interval
[26, . . . , 35],
we found all maximal partial spreads with size in
{23, 24, 25}

Jan De Beule Partial spreads of H(3, q2)



university-logo

Introduction
Partial spreads of H(3, q2)

Examples of sizeO(q2)

Computer results
More examples
Larger examples

maximal partial spreads of size (q + 1)2

H(3, q2) has maximal partial spreads of size (q + 1)2 for
q = 22h, h ≥ 1.
q = 3 (mod 4)

q = 9
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Examples of sizeO(q2)

Computer results
More examples
Larger examples

The case q = 5

In this case we searched for maximal partial ovoids of Q−(5, q).

Exhaustive search: no maximal partial ovoid exist with size
in the interval [49, . . . , 66],
we found a maximal partial ovoid of size 48,
exhaustive search: we found all maximal partial ovoids
containing a conic with size in {40, 41, 42, 43},
exhaustive search: we found no maximal partial ovoids
containing a conic with size in {44, 45, 46, 47}
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one more construction

H(3, q2) has partial spreads of size q + 1 + 3q2−q
2 (by a

construction of Thas).
Maximality is not garantueed by the construction.
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An overview

TUB: q3+q+2
2 (q + 1)2 q + 1 + 3q2−q

2
q = 3 16 16 13
q = 4 35 25 23
q = 5 661 36 36 48
q = 7 1762 64 71

1not reached
2open
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The example of size 48 for q = 5

Maximal partial ovoids of Q(4, q), of size q2 − 1 are known
for q ∈ {3, 5, 7, 11}.
For q = 5, two of them can be glued together to produce
the maximal partial ovoid of size 48 of Q−(5, q).
This is not possible for q = 7 . . . . . . but it is possible for
q = 11.
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The case q = 7 and beyond

q = 7: examples of size 96 and 98 (Cimrakova, Coolsaet)
q = 11: example of size 240 different from glued
example (Coolsaet)
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