On maximal partial spreads of the hermitian variety $\mathrm{H}\left(3, q^{2}\right)$

J. De Beule

Department of Mathematics
Ghent University

April 17, 2010
Algebraic Combinatorics and Applications 2010

Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subsapces (or totally singular) of $V(n+1, q)$ with relation to the form
- incidence is symmterized containment
- The rank of the polar space is the Witt index of the form.

Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subsapces (or totally singular) of $V(n+1, q)$ with relation to the form
- incidence is symmterized containment
- The rank of the polar space is the Witt index of the form.

Finite classical generalized quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry
$\mathcal{S}=(\mathcal{P}, \mathcal{B}$, I) such that
(i) Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two distinct points are incident with at most one line.
(ii) Each line is incident with $1+s$ points ($s \geqslant 1$) and two distinct lines are incident with at most one point.
(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mathrm{I} M$ I $y \mathrm{I} L$.

- Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.

- $Q^{-}(5, q)$: set of points of $\operatorname{PG}(5, q)$ satisfying $g\left(X_{0}, X_{1}\right)+X_{2} X_{3}+X_{4} X_{5}=0$
 where $g\left(X_{0}, X_{1}\right)$ is an irreducible homogenous polynomial of degree two.
 - $\mathrm{H}\left(3, q^{2}\right)$: set of points of $\mathrm{PG}\left(3, q^{2}\right)$ satisfying

- Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.
- $\mathrm{Q}^{-}(5, q)$: set of points of $\operatorname{PG}(5, q)$ satisfying

$$
g\left(X_{0}, X_{1}\right)+X_{2} X_{3}+X_{4} X_{5}=0
$$

where $g\left(X_{0}, X_{1}\right)$ is an irreducible homogenous polynomial of degree two.

- $\mathrm{H}\left(3, q^{2}\right)$: set of points of $\mathrm{PG}\left(3, q^{2}\right)$ satisfying

$$
X_{0}^{q+1}+X_{1}^{q+1}+X_{2}^{q+1}+X_{3}^{q+1}=0
$$

- $\mathrm{Q}(4, q)$: set of points of $\mathrm{PG}(4, q)$ satisfying

$$
X_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0
$$

- $\mathrm{Q}(4, q)$ s are found as subquadrangle of $\mathrm{Q}^{-}(5, q)$ by a non-tangent hyperplane section.
- $\mathrm{Q}(4, q)$: set of points of $\mathrm{PG}(4, q)$ satisfying

$$
x_{0}^{2}+X_{1} X_{2}+X_{3} X_{4}=0
$$

- $\mathrm{Q}(4, q) \mathrm{s}$ are found as subquadrangle of $\mathrm{Q}^{-}(5, q)$ by a non-tangent hyperplane section.

Some properties

- $\mathrm{Q}^{-}(5, q)$: order $\left(q, q^{2}\right)$
- $\mathrm{H}\left(3, q^{2}\right)$: order $\left(q^{2}, q\right)$
- $\mathrm{Q}(4, q)$: order q (meaning: (q, q)).

Theorem

$\mathrm{Q}^{-}(5, q)$ is is omorphic with the dual of $\mathrm{H}\left(3, q^{2}\right)$.

Some properties

- $\mathrm{Q}^{-}(5, q)$: order $\left(q, q^{2}\right)$
- $\mathrm{H}\left(3, q^{2}\right)$: order $\left(q^{2}, q\right)$
- $\mathrm{Q}(4, q)$: order q (meaning: (q, q)).

Theorem

$\mathrm{Q}^{-}(5, q)$ is isomorphic with the dual of $\mathrm{H}\left(3, q^{2}\right)$.

Some properties

- $\mathrm{Q}^{-}(5, q)$: order $\left(q, q^{2}\right)$
- $\mathrm{H}\left(3, q^{2}\right)$: order $\left(q^{2}, q\right)$
- $\mathrm{Q}(4, q)$: order q (meaning: (q, q)).

Theorem

$\mathrm{Q}^{-}(5, q)$ is isomorphic with the dual of $\mathrm{H}\left(3, q^{2}\right)$.

Spreads and ovoids

Definition

An ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O}.

Definition
A spread of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained exactly in one line of \mathcal{B}.

Spreads and ovoids

Definition

An ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O}.

Definition

A spread of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained exactly in one line of \mathcal{B}.

Partial ovoids and partial spreads

Definition

A partial ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains at most one point of \mathcal{S}. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

Definition

A partial spread of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that
every point of \mathcal{S} is contained in at most one line of \mathcal{B}. A partial
spread is maximal if it cannot be extended to a larger partial
spread.

Partial ovoids and partial spreads

Definition

A partial ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains at most one point of \mathcal{S}. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

Definition

A partial spread of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained in at most one line of \mathcal{B}. A partial spread is maximal if it cannot be extended to a larger partial spread.

numbers

Lemma

If \mathcal{S} is a $G Q$ of order (s, t), then an ovoid of \mathcal{S} has size $s t+1$, and a spread of \mathcal{S} has size st +1 Examples of size $\mathcal{O}\left(q^{2}\right)$

Theorem

$\mathrm{Q}^{-}(5, q)$ has no ovoids

Corollary

$\mathrm{H}\left(3, q^{2}\right)$ has no spreads

Theorem

$\mathrm{Q}^{-}(5, q)$ has no ovoids
Corollary
$\mathrm{H}\left(3, q^{2}\right)$ has no spreads

An upper bound on the size

Theorem (DB, Klein, Metsch, Storme)

A partial spread of $\mathrm{H}\left(3, q^{2}\right)$ has size at most $\frac{a^{3}+q+2}{2}$.

- $|\mathcal{B}|=q^{3}+1-\delta, h=\delta\left(q^{2}+1\right)$
- Compute the number of triples in the set

where the unique projective line on P meeting S_{1} and S_{2} is a line of \mathcal{S}.
- $\sum x_{i}=|\mathcal{B}|, h=\delta\left(q^{2}+1\right)$
- lower bound for the number of elements in the set

- $|\mathcal{B}|=q^{3}+1-\delta, h=\delta\left(q^{2}+1\right)$
- Compute the number of triples in the set

$$
\left\{\left(S_{1}, S_{2}, P\right) \| S_{1}, S_{2} \in \mathcal{B}, P \in \mathcal{S}\right\}
$$

where the unique projective line on P meeting S_{1} and S_{2} is a line of \mathcal{S}.

- $\sum x_{i}=|\mathcal{B}|, h=\delta\left(q^{2}+1\right)$
- lower bound for the number of elements in the set

- $|\mathcal{B}|=q^{3}+1-\delta, h=\delta\left(q^{2}+1\right)$
- Compute the number of triples in the set

$$
\left\{\left(S_{1}, S_{2}, P\right) \| S_{1}, S_{2} \in \mathcal{B}, P \in \mathcal{S}\right\}
$$

where the unique projective line on P meeting S_{1} and S_{2} is a line of \mathcal{S}.

- $\sum x_{i}=|\mathcal{B}|, h=\delta\left(q^{2}+1\right)$
- lower bound for the number of elements in the set

- $|\mathcal{B}|=q^{3}+1-\delta, h=\delta\left(q^{2}+1\right)$
- Compute the number of triples in the set

$$
\left\{\left(S_{1}, S_{2}, P\right) \| S_{1}, S_{2} \in \mathcal{B}, P \in \mathcal{S}\right\}
$$

where the unique projective line on P meeting S_{1} and S_{2} is a line of \mathcal{S}.

- $\sum x_{i}=|\mathcal{B}|, h=\delta\left(q^{2}+1\right)$
- lower bound for the number of elements in the set

$$
\delta\left(q^{2}+1\right)|\mathcal{S}|\left(\frac{|\mathcal{S}|}{q+1}-1\right)
$$

$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}

- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$ candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $q+1$ candidates, but at least α_{0} of these candidates are holes
- $(|\mathcal{B}|-2)(a+1)+\alpha_{0} \leq a^{4}-1$

$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}
- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$
candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $G_{1}+1$ candidates, but at least α_{0} of these candidates are holes
- $(|\mathcal{B}|-2)(q+1)+\alpha_{0} \leq q^{4}-1$

$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}
- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$ candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $q+1$ candidates, but at least α_{0} of these candidates are holes
$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}
- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$ candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $q+1$ candidates, but at least α_{0} of these candidates are holes
$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}
- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$ candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $q+1$ candidates, but at least α_{0} of these candidates are holes
- $(|\mathcal{B}|-2)(q+1)+\alpha_{0} \leq q^{4}-1$
$S_{1}, S_{2} \in \mathcal{B}$ such that the number of triples $\left(S_{1}, S_{2}, P\right)$ is maximal (denote this number α). Use the lower bound to define α_{0}
- $|\mathcal{B}|(|\mathcal{B}|-1) \alpha_{0}:=\delta\left(q^{2}+1\right)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_{0}$
- For any two $S_{1}, S_{2} \in \mathcal{B}$ there are $\left(q^{2}+1\right)\left(q^{2}-1\right)$ candidates to be a hole.
- Any $S \in \mathcal{B} \backslash\left\{S_{1}, S_{2}\right\}$ kills $q+1$ candidates, but at least α_{0} of these candidates are holes
- $(|\mathcal{B}|-2)(q+1)+\alpha_{0} \leq q^{4}-1$
- $\left(q^{3}-2 \delta-q\right)\left(q^{3}+q^{2}-\delta\right) q \leq 0$.

An upper bound on the size

Theorem (DB, Klein, Metsch, Storme (2008))
A partial spread of $\mathrm{H}\left(3, q^{2}\right)$ has size at most $\frac{q^{3}+q+2}{2}$.

Examples for $q=2,3$

Theorem (Dye)

There exists a maximal partial ovoid of $\mathrm{Q}^{-}(5,2)$ of size 6 .

Theorem (Ebert and Hirschield)

There exists a maximal partial spread of $\mathrm{H}(3,9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $\mathrm{H}\left(3, q^{2}\right)$ of size $(q+1)^{2}$ for q odd.

Examples for $q=2,3$

Theorem (Dye)

There exists a maximal partial ovoid of $\mathrm{Q}^{-}(5,2)$ of size 6 .

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of $\mathrm{H}(3,9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $\mathrm{H}\left(3, q^{2}\right)$ of size $(q+1)^{2}$ for q odd.

Examples for $q=2,3$

Theorem (Dye)

There exists a maximal partial ovoid of $\mathrm{Q}^{-}(5,2)$ of size 6 .

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of $\mathrm{H}(3,9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $\mathrm{H}\left(3, q^{2}\right)$ of size $(q+1)^{2}$ for q odd.

When equality holds

Corollary

If $\mathrm{H}\left(3, q^{2}\right)$ has a spread of size $\frac{q^{3}+q+2}{2}$, then there exists a symmetric $2-(v, k, \lambda)$ design, with $v=\frac{q^{3}+q+2}{2}, k=q^{2}+1$, $\lambda=2 q$.

The case $q=4$

Exhaustive search:

- no maximal partial spread exist with size in the interval $[26, \ldots, 35]$,
- we found all maximal partial spreads with size in $\{23,24,25\}$

The case $q=4$

Exhaustive search:

- no maximal partial spread exist with size in the interval $[26, \ldots, 35]$,
- we found all maximal partial spreads with size in $\{23,24,25\}$

maximal partial spreads of size $(q+1)^{2}$

$\mathrm{H}\left(3, q^{2}\right)$ has maximal partial spreads of size $(q+1)^{2}$ for

- $q=2^{2 h}, h \geq 1$.
- $q=3(\bmod 4)$
- $q=9$

The case $q=5$

In this case we searched for maximal partial ovoids of $\mathrm{Q}^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval $[49, \ldots, 66]$,
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in $\{40,41,42,43\}$
- exhaustive search: we found no maximal partial ovoids containing a conic with size in $\{44,45,46,47\}$

The case $q=5$

In this case we searched for maximal partial ovoids of $\mathrm{Q}^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval [49, ..., 66],
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in $\{40,41,42,43\}$
- exhaustive search: we found no maximal partial ovoids containing a conic with size in $\{44,45,46,47\}$

The case $q=5$

In this case we searched for maximal partial ovoids of $\mathrm{Q}^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval [49, ..., 66],
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in $\{40,41,42,43\}$,
- exhaustive search: we found no maximal partial ovoids containing a conic with size in $\{44,45,46,47\}$

one more construction

$\mathrm{H}\left(3, q^{2}\right)$ has partial spreads of size $q+1+3 \frac{q^{2}-q}{2}$ (by a construction of Thas).
Maximality is not garantueed by the construction.

one more construction

$\mathrm{H}\left(3, q^{2}\right)$ has partial spreads of size $q+1+3 \frac{q^{2}-q}{2}$ (by a construction of Thas).
Maximality is not garantueed by the construction.

An overview

	TUB: $\frac{q^{3}+q+2}{2}$	$(q+1)^{2}$	$q+1+3 \frac{q^{2}-q}{2}$	
$q=3$	16	16	13	
$q=4$	35	25	23	
$q=5$	66^{1}	36	36	48
$q=7$	176^{2}	64	71	

[^0]
The example of size 48 for $q=5$

- Maximal partial ovoids of $\mathrm{Q}(4, q)$, of size $q^{2}-1$ are known for $q \in\{3,5,7,11\}$.
- For $q=5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $\mathrm{Q}^{-}(5, q)$.
- This is not possible for $a=7 \ldots$... but it is possible for $q=11$.

The example of size 48 for $q=5$

- Maximal partial ovoids of $\mathrm{Q}(4, q)$, of size $q^{2}-1$ are known for $q \in\{3,5,7,11\}$.
- For $q=5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $\mathrm{Q}^{-}(5, q)$.
- This is not possible for $q=7 \ldots$.. but it is possible for $q=11$.

The example of size 48 for $q=5$

- Maximal partial ovoids of $\mathrm{Q}(4, q)$, of size $q^{2}-1$ are known for $q \in\{3,5,7,11\}$.
- For $q=5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $\mathrm{Q}^{-}(5, q)$.
- This is not possible for $q=7 \ldots$. . but it is possible for

The example of size 48 for $q=5$

- Maximal partial ovoids of $\mathrm{Q}(4, q)$, of size $q^{2}-1$ are known for $q \in\{3,5,7,11\}$.
- For $q=5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $\mathrm{Q}^{-}(5, q)$.
- This is not possible for $q=7 \ldots$.. but it is possible for $q=11$.

The case $q=7$ and beyond

- $q=7$: examples of size 96 and 98 (Cimrakova, Coolsaet)
- $q=11$: example of size 240 different from glued example (Coolsaet)

The case $q=7$ and beyond

- $q=7$: examples of size 96 and 98 (Cimrakova, Coolsaet)
- $q=11$: example of size 240 different from glued example (Coolsaet)

[^0]: ${ }^{1}$ not reached
 ${ }^{2}$ open

