On maximal partial spreads of the hermitian variety $H(3, q^2)$

J. De Beule

Department of Mathematics
Ghent University

April 17, 2010

Algebraic Combinatorics and Applications 2010
A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subspaces (or totally singular) of $V(n + 1, q)$ with relation to the form
- incidence is symmetrized containment
- The rank of the polar space is the Witt index of the form.
Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subspaces (or totally singular) of $V(n + 1, q)$ with relation to the form
- incidence is symmetrized containment
- The rank of the polar space is the Witt index of the form.
A finite generalized quadrangle (GQ) is a point-line geometry $S = (\mathcal{P}, \mathcal{B}, I)$ such that

(i) Each point is incident with $1 + t$ lines $(t \geq 1)$ and two distinct points are incident with at most one line.

(ii) Each line is incident with $1 + s$ points $(s \geq 1)$ and two distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x I M I y I L$.
Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.

- $Q^{-}(5, q)$: set of points of $\text{PG}(5, q)$ satisfying
 \[g(X_0, X_1) + X_2 X_3 + X_4 X_5 = 0 \]
 where $g(X_0, X_1)$ is an irreducible homogenous polynomial of degree two.

- $H(3, q^2)$: set of points of $\text{PG}(3, q^2)$ satisfying
 \[X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0 \]
Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.

\(Q^- (5, q) \): set of points of \(\text{PG}(5, q) \) satisfying

\[
g(X_0, X_1) + X_2 X_3 + X_4 X_5 = 0
\]

where \(g(X_0, X_1) \) is an irreducible homogenous polynomial of degree two.

\(H(3, q^2) \): set of points of \(\text{PG}(3, q^2) \) satisfying

\[
X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0
\]
\begin{itemize}
 \item Q(4, q): set of points of PG(4, q) satisfying
 \[x_0^2 + x_1 x_2 + x_3 x_4 = 0 \]
 \item Q(4, q)s are found as subquadrangle of Q^-(5, q) by a non-tangent hyperplane section.
\end{itemize}
Q(4, q): set of points of PG(4, q) satisfying

\[X_0^2 + X_1X_2 + X_3X_4 = 0 \]

Q(4, q)s are found as subquadrangle of Q^−(5, q) by a non-tangent hyperplane section.
Some properties

- $Q^-(5, q)$: order (q, q^2)
- $H(3, q^2)$: order (q^2, q)
- $Q(4, q)$: order q (meaning: (q, q)).

Theorem

$Q^-(5, q)$ is isomorphic with the dual of $H(3, q^2)$.
Some properties

- \(Q^-(5, q) \): order \((q, q^2)\)
- \(H(3, q^2) \): order \((q^2, q)\)
- \(Q(4, q) \): order \(q\) (meaning: \((q, q)\)).

Theorem

\(Q^-(5, q) \) is isomorphic with the dual of \(H(3, q^2) \).
Some properties

- $Q^{-}(5, q)$: order (q, q^2)
- $H(3, q^2)$: order (q^2, q)
- $Q(4, q)$: order q (meaning: (q, q)).

Theorem

$Q^{-}(5, q)$ is isomorphic with the dual of $H(3, q^2)$.
Definition

An *ovoid* of a GQ S is a set O of points of S such that every line of S contains exactly one point of O.

Definition

A *spread* of a GQ S is a set B of lines of S such that every point of S is contained exactly in one line of B.

Spreads and ovoids
Spreads and ovoids

Definition

An ovoid of a GQ S is a set O of points of S such that every line of S contains exactly one point of O.

Definition

A spread of a GQ S is a set B of lines of S such that every point of S is contained exactly in one line of B.
Partial ovoids and partial spreads

Definition

A *partial ovoid* of a GQ S is a set \mathcal{O} of points of S such that every line of S contains at most one point of S. A partial ovoid is *maximal* if it cannot be extended to a larger partial ovoid.

Definition

A *partial spread* of a GQ S is a set \mathcal{B} of lines of S such that every point of S is contained in at most one line of \mathcal{B}. A partial spread is *maximal* if it cannot be extended to a larger partial spread.
Definition

A partial ovoid of a GQ S is a set O of points of S such that every line of S contains at most one point of S. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

Definition

A partial spread of a GQ S is a set B of lines of S such that every point of S is contained in at most one line of B. A partial spread is maximal if it cannot be extended to a larger partial spread.
Lemma

If S is a GQ of order (s, t), then an ovoid of S has size $st + 1$, and a spread of S has size $st + 1$
Theorem

$Q^{-}(5, q)$ has no ovoids

Corollary

$H(3, q^2)$ has no spreads
Theorem
$Q^{-}(5, q)$ has no ovoids

Corollary
$\mathbb{H}(3, q^2)$ has no spreads
An upper bound on the size

Theorem (DB, Klein, Metsch, Storme)

A partial spread of $H(3, q^2)$ has size at most $\frac{q^3 + q + 2}{2}$.
\[|\mathcal{B}| = q^3 + 1 - \delta, \ h = \delta(q^2 + 1) \]

Compute the number of triples in the set

\[\{(S_1, S_2, P) \mid S_1, S_2 \in \mathcal{B}, P \in S\} \]

where the unique projective line on \(P \) meeting \(S_1 \) and \(S_2 \) is a line of \(S \).

\[\sum x_i = |\mathcal{B}|, \ h = \delta(q^2 + 1) \]

lower bound for the number of elements in the set

\[\delta(q^2 + 1)|S| \left(\frac{|S|}{q+1} - 1 \right) \]
\[|B| = q^3 + 1 - \delta, \ h = \delta(q^2 + 1) \]

Compute the number of triples in the set

\[\{ (S_1, S_2, P) \| S_1, S_2 \in B, P \in S \} \]

where the unique projective line on \(P \) meeting \(S_1 \) and \(S_2 \) is a line of \(S \).

\[\sum x_i = |B|, \ h = \delta(q^2 + 1) \]

lower bound for the number of elements in the set

\[\delta(q^2 + 1)|S| \left(\frac{|S|}{q + 1} - 1 \right) \]
\begin{itemize}
 \item $|\mathcal{B}| = q^3 + 1 - \delta$, $h = \delta(q^2 + 1)$
 \item Compute the number of triples in the set
 \[\{ (S_1, S_2, P) \mid S_1, S_2 \in \mathcal{B}, P \in S \} \]
 where the unique projective line on P meeting S_1 and S_2 is a line of S.
 \item $\sum x_i = |\mathcal{B}|$, $h = \delta(q^2 + 1)$
 \item lower bound for the number of elements in the set
 \[\delta(q^2 + 1)|S| \left(\frac{|S|}{q+1} - 1 \right) \]
\end{itemize}
\[|B| = q^3 + 1 - \delta, \quad h = \delta(q^2 + 1) \]

Compute the number of triples in the set

\[\{(S_1, S_2, P) \mid S_1, S_2 \in B, P \in S\} \]

where the unique projective line on \(P \) meeting \(S_1 \) and \(S_2 \) is a line of \(S \).

\[\sum x_i = |B|, \quad h = \delta(q^2 + 1) \]

lower bound for the number of elements in the set

\[\delta(q^2 + 1)|S| \left(\frac{|S|}{q + 1} - 1 \right) \]
Partial spreads of $\mathbb{H}(3, q^2)$

Examples of size $O(q^2)$

Let $S_1, S_2 \in B$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

\[|B|(|B| - 1)\alpha_0 := \delta(q^2 + 1)|B| \left(\frac{|B|}{q+1} - 1 \right) \]

- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in B$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
- Any $S \in B \setminus \{S_1, S_2\}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes

\[(|B| - 2)(q + 1) + \alpha_0 \leq q^4 - 1 \]

\[(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0. \]
$S_1, S_2 \in B$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

- $|B|(|B| - 1)\alpha_0 := \delta(q^2 + 1)|B| \left(\frac{|B|}{q+1} - 1 \right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in B$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
- Any $S \in B \setminus \{S_1, S_2\}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes
- $(|B| - 2)(q + 1) + \alpha_0 \leq q^4 - 1$
- $(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0$.
$S_1, S_2 \in \mathcal{B}$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

- $|\mathcal{B}|(|\mathcal{B}| - 1)\alpha_0 := \delta(q^2 + 1)|\mathcal{B}| \left(\frac{|\mathcal{B}|}{q + 1} - 1 \right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
 - Any $S \in \mathcal{B} \setminus \{S_1, S_2\}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes
 - $(|\mathcal{B}| - 2)(q + 1) + \alpha_0 \leq q^4 - 1$
 - $(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0$.
$S_1, S_2 \in B$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

- $|B|(|B| - 1)\alpha_0 := \delta(q^2 + 1)|B| \left(\frac{|B|}{q+1} - 1 \right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in B$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
- Any $S \in B \setminus \{ S_1, S_2 \}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes
 - $(|B| - 2)(q + 1) + \alpha_0 \leq q^4 - 1$
 - $(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0.$
$S_1, S_2 \in B$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

- $|B|(|B| - 1)\alpha_0 := \delta(q^2 + 1)|B| \left(\frac{|B|}{q+1} - 1 \right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in B$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
- Any $S \in B \setminus \{S_1, S_2\}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes
- $(|B| - 2)(q + 1) + \alpha_0 \leq q^4 - 1$
- $(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0$.

Jan De Beule
$S_1, S_2 \in B$ such that the number of triples (S_1, S_2, P) is maximal (denote this number α). Use the lower bound to define α_0

- $|B|(|B| - 1)\alpha_0 := \delta(q^2 + 1)|B| \left(\frac{|B|}{q+1} - 1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in B$ there are $(q^2 + 1)(q^2 - 1)$ candidates to be a hole.
- Any $S \in B \setminus \{S_1, S_2\}$ kills $q + 1$ candidates, but at least α_0 of these candidates are holes
- $(|B| - 2)(q + 1) + \alpha_0 \leq q^4 - 1$
- $(q^3 - 2\delta - q)(q^3 + q^2 - \delta)q \leq 0.$
An upper bound on the size

Theorem (DB, Klein, Metsch, Storme (2008))

A partial spread of $H(3, q^2)$ has size at most $\frac{q^3 + q + 2}{2}$.
Examples for $q = 2, 3$

Theorem (Dye)

There exists a maximal partial ovoid of $Q^{-}(5, 2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of $H(3, 9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q + 1)^2$ for q odd.
Examples for $q = 2, 3$

Theorem (Dye)

There exists a maximal partial ovoid of $Q^{-}(5, 2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of $H(3, 9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q + 1)^2$ for q odd.
Examples for $q = 2, 3$

Theorem (Dye)

There exists a maximal partial ovoid of $Q^-(5, 2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of $H(3, 9)$ of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q + 1)^2$ for q odd.
When equality holds

Corollary

If $H(3, q^2)$ has a spread of size $\frac{q^3 + q + 2}{2}$, then there exists a symmetric $2 - (v, k, \lambda)$ design, with $v = \frac{q^3 + q + 2}{2}$, $k = q^2 + 1$, $\lambda = 2q$.
The case $q = 4$

Exhaustive search:

- no maximal partial spread exist with size in the interval $[26, \ldots, 35]$,
- we found all maximal partial spreads with size in $\{23, 24, 25\}$
The case $q = 4$

Exhaustive search:

- no maximal partial spread exist with size in the interval $[26, \ldots, 35]$,
- we found all maximal partial spreads with size in $\{23, 24, 25\}$
maximal partial spreads of size \((q + 1)^2\)

\(H(3, q^2)\) has maximal partial spreads of size \((q + 1)^2\) for

- \(q = 2^{2h}, h \geq 1\).
- \(q = 3 \pmod{4}\)
- \(q = 9\)
The case $q = 5$

In this case we searched for maximal partial ovoids of $Q^-(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval $[49, \ldots, 66]$,
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in $\{40, 41, 42, 43\}$,
- exhaustive search: we found no maximal partial ovoids containing a conic with size in $\{44, 45, 46, 47\}$
The case \(q = 5 \)

In this case we searched for maximal partial ovoids of \(\mathcal{Q}^{-}(5, q) \).

- Exhaustive search: no maximal partial ovoid exist with size in the interval \([49, \ldots, 66]\),
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in \(\{40, 41, 42, 43\}\),
- exhaustive search: we found no maximal partial ovoids containing a conic with size in \(\{44, 45, 46, 47\}\).
The case $q = 5$

In this case we searched for maximal partial ovoids of $Q^-(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval $[49, \ldots, 66]$,
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in $\{40, 41, 42, 43\}$,
- exhaustive search: we found no maximal partial ovoids containing a conic with size in $\{44, 45, 46, 47\}$
one more construction

$H(3, q^2)$ has partial spreads of size $q + 1 + 3 \frac{q^2 - q}{2}$ (by a construction of Thas).

Maximality is not guaranteed by the construction.
one more construction

$H(3, q^2)$ has partial spreads of size $q + 1 + 3 \frac{q^2 - q}{2}$ (by a construction of Thas).
Maximality is not guaranteed by the construction.
An overview

<table>
<thead>
<tr>
<th>TUB: $\frac{q^3+q+2}{2}$</th>
<th>$(q + 1)^2$</th>
<th>$q + 1 + 3\frac{q^2-q}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 3$</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$q = 4$</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>$q = 5$</td>
<td>661</td>
<td>36</td>
</tr>
<tr>
<td>$q = 7$</td>
<td>1762</td>
<td>64</td>
</tr>
</tbody>
</table>

1not reached
2open
Maximal partial ovoids of $Q(4, q)$, of size $q^2 - 1$ are known for $q \in \{3, 5, 7, 11\}$.

For $q = 5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.

This is *not* possible for $q = 7$ …… but it is possible for $q = 11$.
Maximal partial ovoids of $Q(4, q)$, of size $q^2 - 1$ are known for $q \in \{3, 5, 7, 11\}$.

For $q = 5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^{-}(5, q)$.

This is *not* possible for $q = 7$ but it is possible for $q = 11$.

The example of size 48 for $q = 5$
Maximal partial ovoids of $Q(4, q)$, of size $q^2 - 1$ are known for $q \in \{3, 5, 7, 11\}$.

For $q = 5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^{-}(5, q)$.

This is not possible for $q = 7$ but it is possible for $q = 11$.
Maximal partial ovoids of $Q(4, q)$, of size $q^2 - 1$ are known for $q \in \{3, 5, 7, 11\}$.

For $q = 5$, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.

This is not possible for $q = 7$ but it is possible for $q = 11$.
The case $q = 7$ and beyond

- $q = 7$: examples of size 96 and 98 (Cimrakova, Coolsaet)
- $q = 11$: example of size 240 different from glued example (Coolsaet)
The case $q = 7$ and beyond

- $q = 7$: examples of size 96 and 98 (Cimrakova, Coolsaet)
- $q = 11$: example of size 240 different from glued example (Coolsaet)