On maximal partial spreads of the hermitian variety $H(3, q^2)$

J. De Beule

Department of Mathematics Ghent University

April 17, 2010 Algebraic Combinatorics and Applications 2010

Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subsapces (or totally singular) of V(n+1,q) with relation to the form
- incidence is symmterized containment
- The rank of the polar space is the Witt index of the form.

Finite classical polar spaces

A geometry associated with a sesquilinear or quadratic form.

- the set of elements of the geometry is the set of all totally isotropic subsapces (or totally singular) of V(n+1,q) with relation to the form
- incidence is symmterized containment
- The rank of the polar space is the Witt index of the form.

Finite classical generalized quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry $\mathcal{S}=(\mathcal{P},\mathcal{B},I)$ such that

- (i) Each point is incident with 1 + t lines $(t \ge 1)$ and two distinct points are incident with at most one line.
- (ii) Each line is incident with 1 + s points $(s \ge 1)$ and two distinct lines are incident with at most one point.
- (iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mid M \mid y \mid L$.

- Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.
- $Q^{-}(5, q)$: set of points of PG(5, q) satisfying

$$g(X_0, X_1) + X_2 X_3 + X_4 X_5 = 0$$

where $g(X_0, X_1)$ is an irreducible homogenous polynomial of degree two.

• $H(3, q^2)$: set of points of $PG(3, q^2)$ satisfying

$$X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0$$

- Finite classical GQs: associated to sesquilinear or quadratic forms of Witt index two.
- $Q^-(5, q)$: set of points of PG(5, q) satisfying

$$g(X_0, X_1) + X_2X_3 + X_4X_5 = 0$$

where $g(X_0, X_1)$ is an irreducible homogenous polynomial of degree two.

• $H(3, q^2)$: set of points of $PG(3, q^2)$ satisfying

$$X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0$$

• Q(4, q): set of points of PG(4, q) satisfying

$$X_0^2 + X_1 X_2 + X_3 X_4 = 0$$

 Q(4, q)s are found as subquadrangle of Q⁻(5, q) by a non-tangent hyperplane section. • Q(4, q): set of points of PG(4, q) satisfying

$$X_0^2 + X_1 X_2 + X_3 X_4 = 0$$

 Q(4, q)s are found as subquadrangle of Q⁻(5, q) by a non-tangent hyperplane section.

Some properties

- $Q^-(5,q)$: order (q,q^2)
- $H(3, q^2)$: order (q^2, q)
- Q(4, q): order q (meaning: (q, q)).

Theorem

 $Q^{-}(5,q)$ is isomorphic with the dual of $H(3,q^2)$.

Some properties

- $Q^-(5, q)$: order (q, q^2)
- $H(3, q^2)$: order (q^2, q)
- Q(4, q): order q (meaning: (q, q)).

Theorem

 $Q^{-}(5,q)$ is isomorphic with the dual of $H(3,q^2)$.

Some properties

- $Q^-(5, q)$: order (q, q^2)
- $H(3, q^2)$: order (q^2, q)
- Q(4, q): order q (meaning: (q, q)).

Theorem

 $Q^{-}(5,q)$ is isomorphic with the dual of $H(3,q^2)$.

Spreads and ovoids

Definition

An *ovoid* of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O} .

Definition

A *spread* of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained exactly in one line of \mathcal{B} .

Spreads and ovoids

Definition

An *ovoid* of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O} .

Definition

A *spread* of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained exactly in one line of \mathcal{B} .

Partial ovoids and partial spreads

Definition

A partial ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains at most one point of \mathcal{S} . A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

Definition

A partial spread of a GQ S is a set B of lines of S such that every point of S is contained in at most one line of B. A partial spread is maximal if it cannot be extended to a larger partial spread.

Partial ovoids and partial spreads

Definition

A partial ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains at most one point of \mathcal{S} . A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

Definition

A partial spread of a GQ \mathcal{S} is a set \mathcal{B} of lines of \mathcal{S} such that every point of \mathcal{S} is contained in at most one line of \mathcal{B} . A partial spread is *maximal* if it cannot be extended to a larger partial spread.

numbers

Lemma

If S is a GQ of order (s, t), then an ovoid of S has size st + 1, and a spread of S has size st + 1

Theorem

 $Q^-(5,q)$ has no ovoids

Corollary

 $H(3, q^2)$ has no spreads

Theorem

 $Q^-(5,q)$ has no ovoids

Corollary

 $H(3, q^2)$ has no spreads

An upper bound on the size

Theorem (DB, Klein, Metsch, Storme)

A partial spread of H(3, q^2) has size at most $\frac{q^3+q+2}{2}$.

•
$$|\mathcal{B}| = q^3 + 1 - \delta$$
, $h = \delta(q^2 + 1)$

$$\{(S_1, S_2, P) | | S_1, S_2 \in \mathcal{B}, P \in \mathcal{S} \}$$

- $\sum x_i = |\mathcal{B}|, h = \delta(q^2 + 1)$
- lower bound for the number of elements in the set

$$\delta(q^2+1)|\mathcal{S}|\left(\frac{|\mathcal{S}|}{q+1}-1\right)$$

•
$$|\mathcal{B}| = q^3 + 1 - \delta$$
, $h = \delta(q^2 + 1)$

$$\{(S_1,S_2,P)\|S_1,S_2\in\mathcal{B},P\in\mathcal{S}\}$$

- $\sum x_i = |\mathcal{B}|, h = \delta(q^2 + 1)$
- lower bound for the number of elements in the set

$$\delta(q^2+1)|\mathcal{S}|\left(\frac{|\mathcal{S}|}{q+1}-1\right)$$

•
$$|\mathcal{B}| = q^3 + 1 - \delta$$
, $h = \delta(q^2 + 1)$

$$\{(S_1,S_2,P)\|S_1,S_2\in\mathcal{B},P\in\mathcal{S}\}$$

- $\sum x_i = |\mathcal{B}|, h = \delta(q^2 + 1)$
- lower bound for the number of elements in the set

$$\delta(q^2+1)|\mathcal{S}|\left(\frac{|\mathcal{S}|}{q+1}-1\right)$$

•
$$|\mathcal{B}| = q^3 + 1 - \delta$$
, $h = \delta(q^2 + 1)$

$$\{(S_1,S_2,P)\|S_1,S_2\in\mathcal{B},P\in\mathcal{S}\}$$

- $\sum x_i = |\mathcal{B}|, h = \delta(q^2 + 1)$
- lower bound for the number of elements in the set

$$\delta(q^2+1)|\mathcal{S}|\left(\frac{|\mathcal{S}|}{q+1}-1\right)$$

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any S∈ B \ {S₁, S₂} kills q + 1 candidates, but at least α₀ of these candidates are holes
- $(|\mathcal{B}| 2)(q + 1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0$.

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any $S \in \mathcal{B} \setminus \{S_1, S_2\}$ kills q + 1 candidates, but at least α_0 of these candidates are holes
- $(|\mathcal{B}| 2)(q+1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0$.

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any S∈ B \ {S₁, S₂} kills q + 1 candidates, but at least α₀ of these candidates are holes
- $(|\mathcal{B}| 2)(q + 1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0.$

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any S∈ B \ {S₁, S₂} kills q + 1 candidates, but at least α₀ of these candidates are holes
- $(|\mathcal{B}| 2)(q + 1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0$.

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any S∈ B \ {S₁, S₂} kills q + 1 candidates, but at least α₀ of these candidates are holes
- $(|\mathcal{B}| 2)(q+1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0$.

- $|\mathcal{B}|(|\mathcal{B}|-1)\alpha_0 := \delta(q^2+1)|\mathcal{B}|\left(\frac{|\mathcal{B}|}{q+1}-1\right)$
- it follows that $\alpha \geq \alpha_0$
- For any two $S_1, S_2 \in \mathcal{B}$ there are $(q^2 + 1)(q^2 1)$ candidates to be a hole.
- Any S∈ B \ {S₁, S₂} kills q + 1 candidates, but at least α₀ of these candidates are holes
- $(|\mathcal{B}| 2)(q + 1) + \alpha_0 \le q^4 1$
- $(q^3 2\delta q)(q^3 + q^2 \delta)q \le 0.$

An upper bound on the size

Theorem (DB, Klein, Metsch, Storme (2008))

A partial spread of H(3, q^2) has size at most $\frac{q^3+q+2}{2}$.

Examples for q = 2,3

Theorem (Dye)

There exists a maximal partial ovoid of $Q^{-}(5,2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of H(3,9) of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q + 1)^2$ for q odd.

Examples for q = 2,3

Theorem (Dye)

There exists a maximal partial ovoid of $Q^{-}(5,2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of H(3,9) of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q+1)^2$ for q odd.

Examples for q = 2,3

Theorem (Dye)

There exists a maximal partial ovoid of $Q^{-}(5,2)$ of size 6.

Theorem (Ebert and Hirschfeld)

There exists a maximal partial spread of H(3,9) of size 16

Theorem (Cossidente)

There exists maximal partial spreads of $H(3, q^2)$ of size $(q+1)^2$ for q odd.

When equality holds

Corollary

If H(3, q^2) has a spread of size $\frac{q^3+q+2}{2}$, then there exists a symmetric 2 $-(v, k, \lambda)$ design, with $v = \frac{q^3+q+2}{2}$, $k = q^2 + 1$, $\lambda = 2q$.

The case q = 4

Exhaustive search:

- no maximal partial spread exist with size in the interval [26,...,35],
- we found all maximal partial spreads with size in {23, 24, 25}

The case q = 4

Exhaustive search:

- no maximal partial spread exist with size in the interval [26,...,35],
- we found all maximal partial spreads with size in {23, 24, 25}

maximal partial spreads of size $(q + 1)^2$

 $H(3, q^2)$ has maximal partial spreads of size $(q + 1)^2$ for

- $q = 2^{2h}, h \ge 1.$
- $q = 3 \pmod{4}$
- q = 9

The case q = 5

In this case we searched for maximal partial ovoids of $Q^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval [49,...,66],
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in {40, 41, 42, 43},
- exhaustive search: we found no maximal partial ovoids containing a conic with size in {44, 45, 46, 47}

The case q = 5

In this case we searched for maximal partial ovoids of $Q^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval [49,...,66],
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in {40, 41, 42, 43},
- exhaustive search: we found no maximal partial ovoids containing a conic with size in {44, 45, 46, 47}

The case q = 5

In this case we searched for maximal partial ovoids of $Q^{-}(5, q)$.

- Exhaustive search: no maximal partial ovoid exist with size in the interval [49,...,66],
- we found a maximal partial ovoid of size 48,
- exhaustive search: we found all maximal partial ovoids containing a conic with size in {40, 41, 42, 43},
- exhaustive search: we found no maximal partial ovoids containing a conic with size in {44, 45, 46, 47}

one more construction

 $H(3, q^2)$ has partial spreads of size $q + 1 + 3\frac{q^2 - q}{2}$ (by a construction of Thas).

Maximality is not garantueed by the construction.

one more construction

 $H(3, q^2)$ has partial spreads of size $q + 1 + 3\frac{q^2 - q}{2}$ (by a construction of Thas).

Maximality is not garantueed by the construction.

An overview

	TUB: $\frac{q^3+q+2}{2}$	$(q+1)^2$	$q+1+3\frac{q^2-q}{2}$	
q=3	16	16	13	
q = 4	35	25	23	
q = 5	66 ¹	36	36	48
<i>q</i> = 7	176 ²	64	71	

¹not reached

²open

- Maximal partial ovoids of Q(4, q), of size $q^2 1$ are known for $q \in \{3, 5, 7, 11\}$.
- For q = 5, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.
- This is *not* possible for $q = 7 \dots$ but it is possible for q = 11.

- Maximal partial ovoids of Q(4, q), of size $q^2 1$ are known for $q \in \{3, 5, 7, 11\}$.
- For q = 5, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.
- This is *not* possible for $q = 7 \dots$ but it is possible for q = 11.

- Maximal partial ovoids of Q(4, q), of size $q^2 1$ are known for $q \in \{3, 5, 7, 11\}$.
- For q = 5, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.
- This is *not* possible for $q = 7 \dots$ but it is possible for q = 11.

- Maximal partial ovoids of Q(4, q), of size $q^2 1$ are known for $q \in \{3, 5, 7, 11\}$.
- For q = 5, two of them can be glued together to produce the maximal partial ovoid of size 48 of $Q^-(5, q)$.
- This is *not* possible for $q = 7 \dots$ but it is possible for q = 11.

The case q = 7 and beyond

- q = 7: examples of size 96 and 98 (Cimrakova, Coolsaet)
- q = 11: example of size 240 different from glued example (Coolsaet)

The case q = 7 and beyond

- q = 7: examples of size 96 and 98 (Cimrakova, Coolsaet)
- q = 11: example of size 240 different from glued example (Coolsaet)