Transitive designs constructed from groups

Dean Crnković Vedrana Mikulić and Andrea Švob

Department of Mathematics University of Rijeka Omladinska 14, 51000 Rijeka, Croatia A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

- 1. $|\mathcal{P}| = v$,
- 2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,
- 3. every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

If \mathcal{D} is a *t*-design, then it is also a *s*-design, for $1 \leq s \leq t-1$.

If $|\mathcal{P}| = |\mathcal{B}|$ then the design is called **symmet**-**ric**.

Theorem 1 (J. D. Key, J. Moori, 2002) Let G be a finite primitive permutation group acting on the set Ω of size n. Further, let $\alpha \in \Omega$, and let $\Delta \neq \{\alpha\}$ be an orbit of the stabilizer G_{α} of α . If

$$\mathcal{B} = \{ \Delta g : g \in G \}$$

and, given $\delta \in \Delta$,

$$\mathcal{E} = \{\{\alpha, \delta\}g : g \in G\},\$$

then $\mathcal{D} = (\Omega, \mathcal{B})$ is a symmetric $1 - (n, |\Delta|, |\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α} then $\Gamma(\Omega, \mathcal{E})$ is a regular connected graph of valency $|\Delta|$, \mathcal{D} is self-dual, and G acts as an automorphism group on each of these structures, primitive on vertices of the graph, and on points and blocks of the design. Instead of taking a single G_{α} -orbit, we can take Δ to be any union of G_{α} -orbits. We will still get a symmetric 1-design with the group G acting as an automorphism group, primitive on points and blocks of the design.

Moreover, if the group G acts primitively on the points and the blocks of a self-dual symmetric 1-design, \mathcal{D} , with duality respected by G, then \mathcal{D} can be obtained by orbiting a union of orbits of a point-stabilizer, as described in Theorem 1.

Theorem 2 (D. C., V. Mikulić)

Let G be a finite permutation group acting primitively on the sets Ω_1 and Ω_2 of size mand n, respectively. Let $\alpha \in \Omega_1$, $\delta \in \Omega_2$, and let $\Delta_2 = \delta G_{\alpha}$ be the G_{α} -orbit of $\delta \in \Omega_2$ and $\Delta_1 = \alpha G_{\delta}$ be the G_{δ} -orbit of $\alpha \in \Omega_1$. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{ \Delta_2 g : g \in G \},\$$

then $\mathcal{D}(G, \alpha, \delta) = (\Omega_2, \mathcal{B})$ is a $1 - (n, |\Delta_2|, |\Delta_1|)$ design with m blocks, and G acts as an automorphism group, primitive on points and blocks of the design. In the construction of the design described in Theorem 2, instead of taking a single G_{α} -orbit, we can take Δ_2 to be any union of G_{α} -orbits.

Corollary 1

Let G be a finite permutation group acting primitively on the sets Ω_1 and Ω_2 of size mand n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s \delta_i G_{\alpha}$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{ \Delta_2 g : g \in G \},\$$

then $\mathcal{D}(G, \alpha, \delta_1, ..., \delta_s) = (\Omega_2, \mathcal{B})$ is a 1-design $1 - (n, |\Delta_2|, \sum_{i=1}^s |\alpha G_{\delta_i}|)$ with *m* blocks, and *G* acts as an automorphism group, primitive on points and blocks of the design.

In fact, this construction gives us all 1-designs on which the group G acts primitively on points and blocks.

Corollary 2

If a group G acts primitively on the points and the blocks of a 1-design \mathcal{D} , then \mathcal{D} can be obtained as described in Corollary 1, *i.e.*, such that Δ_2 is a union of G_{α} -orbits. We can interpret the design (Ω_2, \mathcal{B}) from Corollary 1 in the following way:

- the point set is Ω_2 ,
- the block set is $\Omega_1 = \alpha G$,
- the block $\alpha g'$ is incident with the set of points $\{\delta_i g : g \in G_{\alpha}g', i = 1, \dots s\}.$

Let G be a simple group and H_1 and H_2 be maximal subgroups of G. G acts primitively on $ccl_G(H_1)$ and $ccl_G(H_2)$ by conjugation. We can construct a primitive 1-design such that:

- the point set of the design is $ccl_G(H_2)$,
- the block set is $ccl_G(H_1)$,
- the block $H_1^{g_i}$ is incident with the point $H_2^{h_j}$ if and only if $H_2^{h_j} \cap H_1^{g_i} \cong G_i$, $i = 1, \ldots, k$, where $\{G_1, \ldots, G_k\} \subset \{H_2^x \cap H_1^y \mid x, y \in G\}$.

Let us denote a 1-design constructed in this way by $\mathcal{D}(G, H_2, H_1; G_1, ..., G_k)$.

From the conjugacy class of a maximal subgroup H of a simple group G one can construct a **regular graph**, denoted by $\mathcal{G}(G, H; G_1, ..., G_k)$, in the following way:

- the vertex set of the graph is $ccl_G(H)$,
- the vertex H^{g_i} is adjacent to the vertex H^{g_j} if and only if $H^{g_i} \cap H^{g_j} \cong G_i$, $i = 1, \ldots, k$, where $\{G_1, \ldots, G_k\} \subset \{H^x \cap H^y \mid x, y \in G\}$.

G acts primitively on the set of vertices of $\mathcal{G}(G, H; G_1, ..., G_k)$.

Combinatorial structures constructed from U(3, 4)

Combinatorial	Structure of the full
structure	automorphism group
2-(65,5,1) design	$U(3,4): Z_4$
2-(65,15,21) design	$U(3,4): Z_4$
2-(65,26,250) design	$U(3,4): Z_4$
SRG(208, 75, 30, 25)	$U(3,4): Z_4$
SRG(416, 100, 36, 20)	$G(2,4): Z_2$

Structures constructed from U(3,5)

Structure of the full
automorphism group
$U(3,5):S_3$
$U(3,5)$: Z_2
$U(3,5):Z_2$
$U(3,5)$: S_3
$U(3,5)$: Z_2
$U(3,5):Z_2$

Block designs on 31 points constructed from L(3,5)

Combinatorial	Structure of the full
structure	automorphism group
2-(31,6,1) design	<i>L</i> (3,5)
2-(31,6,100) design	<i>L</i> (3,5)
2-(31,10,300) design	L(3,5)
2-(31,15,700) design	<i>L</i> (3,5)
2-(31,3,25) design	<i>L</i> (3,5)
2-(31,12,550) design	<i>L</i> (3,5)
2-(31,15,875) design	<i>L</i> (3,5)

Strongly regular graphs constructed from U(5,2)

Combinatorial	Structure of the full
structure	automorphism group
SRG(165,36,3,9)	$U(5,2): Z_2$
SRG(176,40,12,8)	$U(5,2)$: Z_2
SRG(297,40,7,5)	$U(5,2)$: Z_2
SRG(1408,567,246,216)	$U(6,2)$: Z_2

Block designs constructed from U(4,2), U(3,3), L(2,32) and L(2,49)

Combinatorial	Structure of the full
structure	automorphism group
2-(36,15,6) design	$U(4,2): Z_2$
2-(36,15,6) design	$U(3,3): Z_2$
2-(40,13,4) design	<i>PGL</i> (4, 3)
2-(40,13,4) design	$U(4,2)$: Z_2
2-(45,12,3) design	$U(4,2)$: Z_2
2-(63,31,15) design	$U(3,3): Z_2$
2-(63,31,15) design	<i>PGL</i> (6,2)
2-(28,4,1) design	$U(3,3): Z_2$
2-(28,12,11) design	PSp(6, 2)
2-(36,16,12) design	PSp(6, 2)
2-(50,8,4) design	$L(2, 49) : Z_2$
2-(50,20,152) design	$L(2,49)$: Z_2

SRG-s constructed from U(4, 2), U(3, 3), L(2, 32)and L(2, 49)

Combinatorial	Structure of the full
structure	automorphism group
SRG(27, 10, 1, 5)	$U(4,2): Z_2$
SRG(36, 14, 4, 6)	$U(3,3): Z_2$
SRG(36, 15, 6, 6)	$U(4,2)$: Z_2
SRG(40, 12, 2, 4)	$U(4,2)$: Z_2
SRG(40, 12, 2, 4)	$U(4,2)$: Z_2
SRG(45, 12, 3, 3)	$U(4,2)$: Z_2
SRG(63, 30, 13, 15)	$U(3,3): Z_2$
SRG(63, 30, 13, 15)	PSp(6, 2)
SRG(63, 32, 16, 16)	PSp(6, 2)
SRG(63, 32, 16, 16)	$U(3,3): Z_2$
SRG(528, 62, 31, 4)	S ₃₃
SRG(1225, 96, 48, 4)	S_{50}

Theorem 3 (D. C., V. Mikulić)

Let G be a finite permutation group acting transitively on the sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s \delta_i G_{\alpha}$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{ \Delta_2 g : g \in G \},\$$

then the incidence structure $\mathcal{D}(G, \alpha, \delta_1, ..., \delta_s) = (\Omega_2, \mathcal{B})$ is a $1 - (n, |\Delta_2|, \frac{|G_{\alpha}|}{|G_{\Delta_2}|} \sum_{i=1}^s |\alpha G_{\delta_i}|)$ design with $\frac{m \cdot |G_{\alpha}|}{|G_{\Delta_2}|}$ blocks. Then the group $H \cong G/\bigcap_{x \in \Omega_2} G_x$ acts as an automorphism group on (Ω_2, \mathcal{B}) , transitive on points and blocks of the design.

Corollary 3

If a group G acts transitively on the points and the blocks of a 1-design \mathcal{D} , then \mathcal{D} can be obtained as described in Theorem 3. Let M be a finite group and H_1 , H_2 , and G be **subgroups** of M. G acts transitively on the conjugacy classes $ccl_G(H_i)$, i = 1, 2, by conjugation. We can construct a 1-design such that:

- the point set of the design is $ccl_G(H_2)$,
- the block set is $ccl_G(H_1)$,
- the block $H_1^{g_i}$ is incident with the point $H_2^{h_j}$ if and only if $H_2^{h_j} \cap H_1^{g_i} \cong G_i$, $i = 1, \ldots, k$, where $\{G_1, \ldots, G_k\} \subset \{H_2^x \cap H_1^y \mid x, y \in G\}$.

This design can have repeated blocks. The group $G/\bigcap_{K \in ccl_G(H_2) \bigcup ccl_G(H_1)} N_G(K)$ acts as an automorphism group of the constructed design, **transitive on points and blocks**.

Block designs constructed from S(6, 2)

Structure of the full
automorphism group
<i>S</i> (6,2)
S(6, 2)
<i>S</i> (6,2)
<i>PGL</i> (6,2)
<i>S</i> (6,2)
<i>S</i> (6,2)
<i>S</i> (6,2)
<i>S</i> (6,2)
<i>PGL</i> (6,2)

POSSIBLE APPLICATION

Any linear code is isomorphic to a code with generator matrix in so-called **standard form**, *i.e.* the form $[I_k|A]$; a check matrix then is given by $[-A^T|I_{n-k}]$. The first k coordinates are the **information symbols** and the last n-k coordinates are the **check symbols**.

Permutation decoding was first developed by MacWilliams in 1964, and involves finding a set of automorphisms of a code called a **PD-set**.

Definition 1

If C is a t-error-correcting code with information set \mathcal{I} and check set \mathcal{C} , then a **PD-set** for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the check positions \mathcal{C} .

An automorphism of a code is any permutation of the coordinate positions that maps codewords to codewords. For $s \leq t$ an s-**PD-set** is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by at least one member of S into C.

The property of having a PD-set will not, in general, be invariant under isomorphism of codes, *i.e.* it depends on the choice of information set.

If S is a PD-set for a t-error-correcting $[n; k; d]_q$ code C, and r = n - k, then

$$|S| \ge \left\lceil \frac{n}{r} \left\lceil \frac{n-1}{r-1} \left\lceil \dots \left\lceil \frac{n-t+1}{r-t+1} \right\rceil \dots \right\rceil \right\rceil \right\rceil.$$

This result can be adapted to s-PD-sets for $s \le t$ by replacing t by s in the formula.

Good candidates for permutation decoding are linear codes with a large automorphism group and the large size of the check set (small dimension). The code $C_F(\mathcal{D})$ of the design \mathcal{D} over the finite field F is the vector space spanned by the incidence vectors of the blocks over F. It is known that $Aut(\mathcal{D}) \leq Aut(C_F(\mathcal{D}))$.

By the construction described in Teorem 3 we can construct designs admitting a large transitive automorphism group. Codes of these designs are candidates for permutation decoding.

INFINITE DESIGNS

Definition 2

Let t be a positive integer, v an infinite cardinal, k and \overline{k} cardinals with $k + \overline{k} = v$, and Λ a $(t+1) \times (t+1)$ matrix with rows and columns indexed by $\{0, \ldots, t\}$ with (i, j) entry a cardinal number if $i + j \leq t$ and blank otherwise. Then a simple infinite $t - (v, (k, \overline{k}), \Lambda)$ design consists of a set V of points and a set \mathcal{B} of subsets of V, having the properties

- |B| = k and $V \setminus B = \overline{k}$, for all $B \in \mathcal{B}$.
- For $0 \leq i + j \leq t$, let $x_1, \ldots, x_i, y_1, \ldots, y_j$ be distinct points of V. Then the number of elements of \mathcal{B} containing all of x_1, \ldots, x_i and none of y_1, \ldots, y_j is precisely $\Lambda_{i,j}$.
- No block contains another block.

In a nonsimple infinite designs repeated blocks are allowed and the last condition should be replaced by

• No block strictly contains another block.

 $\begin{array}{l} \Lambda_{0,0} = b \\ \Lambda_{1,0} = r \end{array}$

Let G be an infinite group acting transitively on the infinite sets Ω_1 and Ω_2 . In a similar way as in Teorem 3 one constructs an infinite 1-design having an automorphism group isomorphic to $G/\bigcap_{x\in\Omega_2}G_x$ that acts transitively on points and blocks of the design.