Transitive designs constructed from groups

Dean Crnković
Vedrana Mikulić and
Andrea Švob

Department of Mathematics

University of Rijeka
Omladinska 14, 51000 Rijeka, Croatia

A $t-(v, k, \lambda)$ design is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

1. $|\mathcal{P}|=v$,
2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
3. every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B}.

If \mathcal{D} is a t-design, then it is also a s-design, for $1 \leq s \leq t-1$.

If $|\mathcal{P}|=|\mathcal{B}|$ then the design is called symmetric.

Theorem 1 (J. D. Key, J. Moori, 2002)

Let G be a finite primitive permutation group acting on the set Ω of size n. Further, let $\alpha \in \Omega$, and let $\Delta \neq\{\alpha\}$ be an orbit of the stabilizer G_{α} of α. If

$$
\mathcal{B}=\{\Delta g: g \in G\}
$$

and, given $\delta \in \Delta$,

$$
\mathcal{E}=\{\{\alpha, \delta\} g: g \in G\}
$$

then $\mathcal{D}=(\Omega, \mathcal{B})$ is a symmetric $1-(n,|\Delta|,|\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α} then $\Gamma(\Omega, \mathcal{E})$ is a regular connected graph of valency $|\Delta|, \mathcal{D}$ is self-dual, and G acts as an automorphism group on each of these structures, primitive on vertices of the graph, and on points and blocks of the design.

Instead of taking a single G_{α}-orbit, we can take Δ to be any union of G_{α}-orbits. We will still get a symmetric 1-design with the group G acting as an automorphism group, primitive on points and blocks of the design.

Moreover, if the group G acts primitively on the points and the blocks of a self-dual symmetric 1-design, \mathcal{D}, with duality respected by G, then \mathcal{D} can be obtained by orbiting a union of orbits of a point-stabilizer, as described in Theorem 1.

Theorem 2 (D. C., V. Mikulić)

Let G be a finite permutation group acting primitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}, \delta \in \Omega_{2}$, and let $\Delta_{2}=\delta G_{\alpha}$ be the G_{α}-orbit of $\delta \in \Omega_{2}$ and $\Delta_{1}=\alpha G_{\delta}$ be the $G_{\delta^{-}}$orbit of $\alpha \in \Omega_{1}$.
If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{\Delta_{2} g: g \in G\right\}
$$

then $\mathcal{D}(G, \alpha, \delta)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|,\left|\Delta_{1}\right|\right)$ design with m blocks, and G acts as an automorphism group, primitive on points and blocks of the design.

In the construction of the design described in Theorem 2, instead of taking a single G_{α}-orbit, we can take Δ_{2} to be any union of G_{α}-orbits.

Corollary 1

Let G be a finite permutation group acting primitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=$ $\bigcup_{i=1}^{s} \delta_{i} G_{\alpha}$, where $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{\Delta_{2} g: g \in G\right\}
$$

then $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=\left(\Omega_{2}, \mathcal{B}\right)$ is a 1-design $1-\left(n,\left|\Delta_{2}\right|, \sum_{i=1}^{s}\left|\alpha G_{\delta_{i}}\right|\right)$ with m blocks, and G acts as an automorphism group, primitive on points and blocks of the design.

In fact, this construction gives us all 1-designs on which the group G acts primitively on points and blocks.

Corollary 2

If a group G acts primitively on the points and the blocks of a 1 -design \mathcal{D}, then \mathcal{D} can be obtained as described in Corollary 1, i.e., such that Δ_{2} is a union of G_{α}-orbits.

We can interpret the design $\left(\Omega_{2}, \mathcal{B}\right)$ from Corollary 1 in the following way:

- the point set is Ω_{2},
- the block set is $\Omega_{1}=\alpha G$,
- the block αg^{\prime} is incident with the set of points $\left\{\delta_{i} g: g \in G_{\alpha} g^{\prime}, i=1, \ldots s\right\}$.

Let G be a simple group and H_{1} and H_{2} be maximal subgroups of G. G acts primitively on $c c l_{G}\left(H_{1}\right)$ and $c c l_{G}\left(H_{2}\right)$ by conjugation. We can construct a primitive 1 -design such that:

- the point set of the design is $\operatorname{ccl}_{G}\left(H_{2}\right)$,
- the block set is $\operatorname{ccl}_{G}\left(H_{1}\right)$,
- the block $H_{1}^{g_{i}}$ is incident with the point $H_{2}^{h_{j}}$ if and only if $H_{2}^{h_{j}} \cap H_{1}^{g_{i}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H_{2}^{x} \cap H_{1}^{y} \mid x, y \in G\right\}$.

Let us denote a 1-design constructed in this way by $\mathcal{D}\left(G, H_{2}, H_{1} ; G_{1}, \ldots, G_{k}\right)$.

From the conjugacy class of a maximal subgroup H of a simple group G one can construct a regular graph, denoted by $\mathcal{G}\left(G, H ; G_{1}, \ldots, G_{k}\right)$, in the following way:

- the vertex set of the graph is $c c l_{G}(H)$,
- the vertex $H^{g_{i}}$ is adjacent to the vertex $H^{g_{j}}$ if and only if $H^{g_{i}} \cap H^{g_{j}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H^{x} \cap H^{y} \mid x, y \in G\right\}$.
G acts primitively on the set of vertices of $\mathcal{G}\left(G, H ; G_{1}, \ldots, G_{k}\right)$.

Combinatorial structures constructed from $U(3,4)$

Combinatorial structure	Structure of the full automorphism group
$2-(65,5,1)$ design	$U(3,4): Z_{4}$
$2-(65,15,21)$ design	$U(3,4): Z_{4}$
$2-(65,26,250)$ design	$U(3,4): Z_{4}$
$S R G(208,75,30,25)$	$U(3,4): Z_{4}$
$S R G(416,100,36,20)$	$G(2,4): Z_{2}$

Structures constructed from $U(3,5)$

Combinatorial structure	Structure of the full automorphism group
$2-(126,6,1)$ design	$U(3,5): S_{3}$
$2-(50,14,13)$ design	$U(3,5): Z_{2}$
$2-(126,36,14)$ design	$U(3,5): Z_{2}$
$S R G(525,144,48,36)$	$U(3,5): S_{3}$
$S R G(50,7,0,1)$	$U(3,5): Z_{2}$
$S R G(175,72,20,36)$	$U(3,5): Z_{2}$

Block designs on 31 points constructed from $L(3,5)$

Combinatorial structure	Structure of the full automorphism group
$2-(31,6,1)$ design	$L(3,5)$
$2-(31,6,100)$ design	$L(3,5)$
$2-(31,10,300)$ design	$L(3,5)$
$2-(31,15,700)$ design	$L(3,5)$
$2-(31,3,25)$ design	$L(3,5)$
$2-(31,12,550)$ design	$L(3,5)$
$2-(31,15,875)$ design	$L(3,5)$

Strongly regular graphs constructed from $U(5,2)$

Combinatorial structure	Structure of the full automorphism group
SRG(165,36,3,9)	$U(5,2): Z_{2}$
SRG(176,40,12,8)	$U(5,2): Z_{2}$
SRG(297,40,7,5)	$U(5,2): Z_{2}$
SRG(1408,567,246,216)	$U(6,2): Z_{2}$

Block designs constructed from $U(4,2), U(3,3)$, $L(2,32)$ and $L(2,49)$

Combinatorial structure	Structure of the full automorphism group
$2-(36,15,6)$ design	$U(4,2): Z_{2}$
$2-(36,15,6)$ design	$U(3,3): Z_{2}$
$2-(40,13,4)$ design	$P G L(4,3)$
$2-(40,13,4)$ design	$U(4,2): Z_{2}$
$2-(45,12,3)$ design	$U(4,2): Z_{2}$
$2-(63,31,15)$ design	$U(3,3): Z_{2}$
$2-(63,31,15)$ design	$P G L(6,2)$
$2-(28,4,1)$ design	$U(3,3): Z_{2}$
$2-(28,12,11)$ design	$P S p(6,2)$
$2-(36,16,12)$ design	$P S p(6,2)$
$2-(50,8,4)$ design	$L(2,49): Z_{2}$
$2-(50,20,152)$ design	$L(2,49): Z_{2}$

SRG-s constructed from $U(4,2), U(3,3), L(2,32)$ and $L(2,49)$

Combinatorial structure	Structure of the full automorphism group
$S R G(27,10,1,5)$	$U(4,2): Z_{2}$
$S R G(36,14,4,6)$	$U(3,3): Z_{2}$
$S R G(36,15,6,6)$	$U(4,2): Z_{2}$
$S R G(40,12,2,4)$	$U(4,2): Z_{2}$
$S R G(40,12,2,4)$	$U(4,2): Z_{2}$
$S R G(45,12,3,3)$	$U(4,2): Z_{2}$
$S R G(63,30,13,15)$	$U(3,3): Z_{2}$
$S R G(63,30,13,15)$	$P S p(6,2)$
$S R G(63,32,16,16)$	$P S p(6,2)$
$S R G(63,32,16,16)$	$U(3,3): Z_{2}$
$S R G(528,62,31,4)$	S_{33}
$S R G(1225,96,48,4)$	S_{50}

Theorem 3 (D. C., V. Mikulić)

Let G be a finite permutation group acting transitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=$ $\bigcup_{i=1}^{s} \delta_{i} G_{\alpha}$, where $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{\Delta_{2} g: g \in G\right\}
$$

then the incidence structure $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=$ $\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|, \frac{\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|} \sum_{i=1}^{s}\left|\alpha G_{\delta_{i}}\right|\right)$ design with $\frac{m \cdot\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|}$ blocks. Then the group $H \cong$ $G / \bigcap_{x \in \Omega_{2}} G_{x}$ acts as an automorphism group on $\left(\Omega_{2}, \mathcal{B}\right)$, transitive on points and blocks of the design.

Corollary 3

If a group G acts transitively on the points and the blocks of a 1 -design \mathcal{D}, then \mathcal{D} can be obtained as described in Theorem 3.

Let M be a finite group and H_{1}, H_{2}, and G be subgroups of $M . G$ acts transitively on the conjugacy classes $\operatorname{ccl}_{G}\left(H_{i}\right), i=1,2$, by conjugation. We can construct a 1 -design such that:

- the point set of the design is $\operatorname{ccl}_{G}\left(H_{2}\right)$,
- the block set is $\operatorname{ccl}_{G}\left(H_{1}\right)$,
- the block $H_{1}^{g_{i}}$ is incident with the point $H_{2}^{h_{j}}$ if and only if $H_{2}^{h_{j}} \cap H_{1}^{g_{i}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H_{2}^{x} \cap H_{1}^{y} \mid x, y \in G\right\}$.

This design can have repeated blocks. The group $G / \bigcap_{K \in c c l_{G}\left(H_{2}\right) \cup \operatorname{ccl}_{G}\left(H_{1}\right)} N_{G}(K)$ acts as an automorphism group of the constructed design, transitive on points and blocks.

Block designs constructed from $S(6,2)$

Combinatorial structure	Structure of the full automorphism group
2-(28,12,11) design	$S(6,2)$
2-(28,4,5) design	$S(6,2)$
2-(28,10,40) design	$S(6,2)$
$2-(36,16,12)$ design	$S(6,2)$
2-(36,8,6) design	$S(6,2)$
2-(36,12,33) design	$S(6,2)$
2-(36,6,8) design	$S(6,2)$
$2-(63,31,15)$ design	$P G L(6,2)$
$2-(28,7,16)$ design	$S(6,2)$
$2-(28,10,45)$ design	$S(6,2)$
$2-(28,12,66)$ design	$S(6,2)$
$2-(36,16,72)$ design	$S(6,2)$
$2-(63,31,90)$ design	$P G L(6,2)$

POSSIBLE APPLICATION

Any linear code is isomorphic to a code with generator matrix in so-called standard form, i.e. the form $\left[I_{k} \mid A\right]$; a check matrix then is given by $\left[-A^{T} \mid I_{n-k}\right]$. The first k coordinates are the information symbols and the last $n-k$ coordinates are the check symbols.

Permutation decoding was first developed by MacWilliams in 1964, and involves finding a set of automorphisms of a code called a PD-set.

Definition 1

If C is a t-error-correcting code with information set \mathcal{I} and check set \mathcal{C}, then a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the check positions \mathcal{C}.

An automorphism of a code is any permutation of the coordinate positions that maps codewords to codewords. For $s \leq t$ an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by at least one member of S into \mathcal{C}.

The property of having a PD-set will not, in general, be invariant under isomorphism of codes, i.e. it depends on the choice of information set.

If S is a PD-set for a t-error-correcting $[n ; k ; d]_{q}$ code C, and $r=n-k$, then

$$
|S| \geq\left\lceil\frac{n}{r}\left\lceil\frac{n-1}{r-1}\left\lceil\ldots\left\lceil\frac{n-t+1}{r-t+1}\right\rceil \ldots\right\rceil\right\rceil\right\rceil .
$$

This result can be adapted to s-PD-sets for $s \leq t$ by replacing t by s in the formula.

Good candidates for permutation decoding are linear codes with a large automorphism group and the large size of the check set (small dimension).

The code $C_{F}(\mathcal{D})$ of the design \mathcal{D} over the finite field F is the vector space spanned by the incidence vectors of the blocks over F. It is known that $\operatorname{Aut}(\mathcal{D}) \leq \operatorname{Aut}\left(C_{F}(\mathcal{D})\right)$.

By the construction described in Teorem 3 we can construct designs admitting a large transitive automorphism group. Codes of these designs are candidates for permutation decoding.

INFINITE DESIGNS

Definition 2

Let t be a positive integer, v an infinite cardinal, k and \bar{k} cardinals with $k+\bar{k}=v$, and \wedge a $(t+1) \times(t+1)$ matrix with rows and columns indexed by $\{0, \ldots, t\}$ with (i, j) entry a cardinal number if $i+j \leq t$ and blank otherwise. Then a simple infinite $t-(v,(k, \bar{k}), \Lambda)$ design consists of a set V of points and a set \mathcal{B} of subsets of V, having the properties

- $|B|=k$ and $V \backslash B=\bar{k}$, for all $B \in \mathcal{B}$.
- For $0 \leq i+j \leq t$, let $x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}$ be distinct points of V. Then the number of elements of \mathcal{B} containing all of x_{1}, \ldots, x_{i} and none of y_{1}, \ldots, y_{j} is precisely $\wedge_{i, j}$.
- No block contains another block.

In a nonsimple infinite designs repeated blocks are allowed and the last condition should be replaced by

- No block strictly contains another block.
$\Lambda_{0,0}=b$
$\Lambda_{1,0}=r$

Let G be an infinite group acting transitively on the infinite sets Ω_{1} and Ω_{2}. In a similar way as in Teorem 3 one constructs an infinite 1-design having an automorphism group isomorphic to $G / \bigcap_{x \in \Omega_{2}} G_{x}$ that acts transitively on points and blocks of the design.

