Codes and Sequences Over Finite Rings

Eimear Byrne

Codes and Sequences Over Finite Rings

Eimear Byrne

Claude Shannon Institute and School of Mathematical Sciences University College Dublin Ireland

ALCOMA10

Outline

Codes and Sequences Over Finite Rings

Eimear Byrne

- Background
- Rings and Weights
- Sequences and Codes
- Examples

A Binary Code

Codes and Sequences Over Finite Rings

Eimear Byrne

Let
$$(n, s) = 1$$
 and let $d = 2^s + 1$. Consider the binary code: $C = \{c_{\alpha,\beta}(x) = \text{Tr}(\alpha x) + \text{Tr}(\beta x^d), \alpha, \beta \in GF(2^n)\}.$

Let (n, s) = 1 and let $d = 2^s + 1$. Consider the binary code:

$$C = \{c_{\alpha,\beta}(x) = \operatorname{Tr}(\alpha x) + \operatorname{Tr}(\beta x^d), \alpha, \beta \in GF(2^n)\}.$$

C has generator matrix

$$\left[\begin{array}{c|c} x_1 & x_2 & \cdots & x_{2^n-1} \\ x_1^d & x_2^d & \cdots & x_{2^n-1}^d \end{array}\right],$$

Let (n, s) = 1 and let $d = 2^s + 1$. Consider the binary code:

$$C = \{c_{\alpha,\beta}(x) = \operatorname{Tr}(\alpha x) + \operatorname{Tr}(\beta x^d), \alpha, \beta \in GF(2^n)\}.$$

C has generator matrix

$$\left[\begin{array}{c|c|c} x_1 & x_2 & \cdots & x_{2^n-1} \\ x_1^d & x_2^d & \cdots & x_{2^n-1}^d \end{array}\right],$$

and

$$w_H(c_{\alpha,\beta}) = \left(2^n - \sum_{x \in GF(2^n)} (-1)^{\operatorname{Tr}(\alpha x) + \operatorname{Tr}(\beta x^d)}\right)/2.$$

A Binary Code

Codes and Sequences Over Finite Rings

Fimear Byrne

Let (n, s) = 1 and let $d = 2^s + 1$. Consider the binary code:

$$C = \{c_{\alpha,\beta}(x) = \operatorname{Tr}(\alpha x) + \operatorname{Tr}(\beta x^d), \alpha, \beta \in GF(2^n)\}.$$

C has generator matrix

$$\left[\begin{array}{c|c} x_1 & x_2 & \cdots & x_{2^n-1} \\ x_1^d & x_2^d & \cdots & x_{2^n-1}^d \end{array}\right],$$

and

$$w_{H}(c_{\alpha,\beta}) = \left(2^{n} - \sum_{x \in GF(2^{n})} (-1)^{\operatorname{Tr}(\alpha x) + \operatorname{Tr}(\beta x^{d})}\right)/2.$$

C has length $2^n - 1$. For odd n it has dimension 2n and 3 non-zero weights:

$${2^{n-1}-2^{\frac{n-1}{2}},\ 2^{n-1},\ 2^{n-1}+2^{\frac{n-1}{2}}}.$$

Codes and Sequences Over Finite Rings

Eimear Byrne

For a finite ring R, $\hat{R}:=\operatorname{Hom}_{\mathbb{Z}}(R,\mathbb{C}^{\times})$, is an R-R bimodule:

$$^{r}\chi(x) = \chi(rx), \quad \chi^{r}(x) = \chi(xr)$$

for all $x, r \in R, \chi \in \hat{R}$.

Codes and Sequences Over Finite Rings

Eimear Byrne

For a finite ring R, $\hat{R} := \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{C}^{\times})$, is an R-R bimodule:

$$^{r}\chi(x) = \chi(rx), \quad \chi^{r}(x) = \chi(xr)$$

for all $x, r \in R, \chi \in \hat{R}$.

The following are equivalent definitions:

- \blacksquare R is a Frobenius ring
- soc_RR is left principal,
- \blacksquare $_R(R/rad\ R) \simeq soc_R R$,
- $RR \simeq R\hat{R}$

Codes and Sequences Over Finite Rings

Eimear Byrne

For a finite ring R, $\hat{R} := \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{C}^{\times})$, is an R-R bimodule:

$$^{r}\chi(x) = \chi(rx), \quad \chi^{r}(x) = \chi(xr)$$

for all $x, r \in R, \chi \in \hat{R}$.

The following are equivalent definitions:

- \blacksquare R is a Frobenius ring
- soc_RR is left principal,
- \blacksquare $_R(R/rad\ R) \simeq soc_R R$,
- $RR \simeq R\hat{R}$

Then $_R\hat{R}=_R\langle\chi\rangle$ for some (left) generating character χ .

Codes and Sequences Over Finite Rings

Eimear Byrn

The following are examples of Frobenius rings.

- integer residue rings \mathbb{Z}_m
- any semi-simple ring
- principal ideal rings
- direct products of Frobenius rings
- matrix rings over Frobenius rings
- group rings over Frobenius rings

Homogeneous Weights

Codes and Sequences Over Finite Rings

Eimear Byrne

Definition

A weight $w: R \longrightarrow \mathbb{Q}$ is (left) homogeneous, if w(0) = 0 and

- 1 If Rx = Ry then w(x) = w(y) for all $x, y \in R$.
- **2** There exists a real number γ such that

$$\sum_{y \in Rx} w(y) \ = \ \gamma \, |Rx| \qquad \text{for all } x \in R \setminus \{0\}.$$

Codes and Sequences Over Finite Rings

Eimear Byrne

Example

On every finite field \mathbb{F}_q the Hamming weight is a homogeneous weight of average value $\gamma = \frac{q-1}{q}$.

Codes and Sequences Over Finite Rings

Eimear Byrn

Example

On every finite field \mathbb{F}_q the Hamming weight is a homogeneous weight of average value $\gamma = \frac{q-1}{q}$.

Example

On \mathbb{Z}_4 the Lee weight is homogeneous with $\gamma = 1$.

X	0	1	2	3
$w_{\text{Lee}}(x)$	0	1	2	1

Codes and Sequences Over Finite Rings

Eimear Byrne

Example

On \mathbb{Z}_{10} the following weight is homogeneous with $\gamma = 1$:

X	0	1	2	3	4	5	6	7	8	9
$w_{hom}(x)$	0	<u>3</u>	<u>5</u>	<u>3</u>	<u>5</u>	2	<u>5</u>	<u>3</u>	<u>5</u>	<u>3</u>

Codes and Sequences Over Finite Rings

Eimear Byrne

Example

On a local Frobenius ring R with q-element residue field the weight

$$w:R\longrightarrow \mathbb{R},\quad x\mapsto \left\{ egin{array}{ll} 0 & : & x=0, \\ rac{q}{q-1} & : & x\in soc(R), \ x
eq 0, \\ 1 & : & \text{otherwise}, \end{array}
ight.$$

is a homogeneous weight of average value $\gamma = 1$.

Homogeneous Weights of FFRs

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem (Honold)

Let R be a finite Frobenius ring with generating character χ . Then the homogeneous weights on R are precisely the functions

$$w: R \longrightarrow \mathbb{R}, \quad x \mapsto \gamma \Big[1 - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(xu) \Big]$$

where γ is a real number.

Characters and Trace Maps

Codes and Sequences Over Finite Rings

Eimear Byrn

Let R > S be Frobenius rings.

Definition

Let T be an S-module epimorphism $T: {}_SR \longrightarrow {}_SS$ whose kernel contains no non-trivial left ideal of R. We say that T is a trace map from R onto S.

Characters and Trace Maps

Codes and Sequences Over Finite Rings

Eimear Byrn

Let R > S be Frobenius rings.

Definition

Let T be an S-module epimorphism $T: {}_SR \longrightarrow {}_SS$ whose kernel contains no non-trivial left ideal of R. We say that T is a trace map from R onto S.

A generating character $\Phi \in \hat{S}$ determines a generating character $\chi \in \hat{R}$ as:

$$\chi(x) = \Phi(T(x)) \ \forall \ x \in R.$$

Codes and Sequences Over Finite Rings

Eimear Byrne

Example (Characters and Traces on $M_n(\mathbb{Z}_m)$)

Codes and Sequences Over Finite Rings

Eimear Byrne

Example (Characters and Traces on $M_n(\mathbb{Z}_m)$)

 $\Phi(x) = \omega^x, \omega$ a primitive *m*th root of unity in \mathbb{C}^{\times}

Codes and Sequences Over Finite Rings

Fimear Byrne

Example (Characters and Traces on $M_n(\mathbb{Z}_m)$)

- $\Phi(x) = \omega^x, \omega$ a primitive *m*th root of unity in \mathbb{C}^{\times}
- T is the usual trace map from $M_n(\mathbb{Z}_m)$ onto \mathbb{Z}_m .

Codes and Sequences Over Finite Rings

Eimear Byrne

Example (Characters and Traces on Galois Rings)

Let $R = GR(p^n, sk), S := GR(p^n, s), B := \mathbb{Z}_{p^n}$.

Example (Characters and Traces on Galois Rings)

Let $R = GR(p^n, sk), S := GR(p^n, s), B := \mathbb{Z}_{p^n}$.

 $\Phi(x) = \omega^x, \omega$ a primitive p^n th root of unity in \mathbb{C}^{\times}

Example (Characters and Traces on Galois Rings)

Let $R = GR(p^n, sk), S := GR(p^n, s), B := \mathbb{Z}_{p^n}$.

- $\Phi(x) = \omega^x, \omega$ a primitive p^n th root of unity in \mathbb{C}^{\times}
- $\sigma: R \longrightarrow R: \sum_{i=0}^{n} p^{i} a_{i} \mapsto \sum_{i=0}^{n} p^{i} a_{i}^{p} \in Aut(R)$

Eimear Byrne

Example (Characters and Traces on Galois Rings)

Let $R = GR(p^n, sk), S := GR(p^n, s), B := \mathbb{Z}_{p^n}$.

- $\Phi(x) = \omega^x, \omega$ a primitive p^n th root of unity in \mathbb{C}^{\times}
- $\sigma: R \longrightarrow R: \sum_{i=0}^{n} p^{i} a_{i} \mapsto \sum_{i=0}^{n} p^{i} a_{i}^{p} \in Aut(R)$
- \blacksquare $T_{R/S}: R \longrightarrow S: a \mapsto a + \sigma^{s}(a) + \cdots + \sigma^{s(k-1)}(a)$

A Subring Subcode

Codes and Sequences Over Finite Rings

Eimear Byrne

For any map $f: R \longrightarrow R$, we define the left *S*-linear subring subcode

$$C_f = \{c_{\alpha,\beta}^f : R \longrightarrow S : x \mapsto T(\alpha x + \beta f(x)) : \alpha, \beta \in R\}.$$

A Subring Subcode

Codes and Sequences Over Finite Rings

Fimear Byrne

For any map $f: R \longrightarrow R$, we define the left S-linear subring subcode

$$C_f = \{c_{\alpha,\beta}^f : R \longrightarrow S : x \mapsto T(\alpha x + \beta f(x)) : \alpha, \beta \in R\}.$$

We compute the weight of each codeword as:

$$w(c_{\alpha,\beta}^f) = \sum_{x \in R} w(c_{\alpha,\beta}^f(x))$$

For any map $f: R \longrightarrow R$, we define the left *S*-linear subring subcode

$$C_f = \{c_{\alpha,\beta}^f : R \longrightarrow S : x \mapsto T(\alpha x + \beta f(x)) : \alpha, \beta \in R\}.$$

We compute the weight of each codeword as:

$$\begin{split} w(c_{\alpha,\beta}^f) &= \sum_{x \in R} w(c_{\alpha,\beta}^f(x)) \\ &= |R| - \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \Phi^u(T(\alpha x + \beta f(x))) \end{split}$$

For any map $f: R \longrightarrow R$, we define the left *S*-linear subring subcode

$$C_f = \{c_{\alpha,\beta}^f : R \longrightarrow S : x \mapsto T(\alpha x + \beta f(x)) : \alpha, \beta \in R\}.$$

We compute the weight of each codeword as:

$$\begin{split} w(c_{\alpha,\beta}^f) &= \sum_{x \in R} w(c_{\alpha,\beta}^f(x)) \\ &= |R| - \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \Phi^u(T(\alpha x + \beta f(x))) \\ &= |R| - \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \chi^u(\alpha x + \beta f(x)). \end{split}$$

Fimear Byrne

Definition

Let R > S be Frobenius rings with trace map $T : {}_{S}R \longrightarrow {}_{S}S$. Let $f : R \longrightarrow R$. For each $\alpha, \beta \in R$, define

$$W^f(\alpha,\beta) := \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \chi^u(\alpha x + \beta f(x)) = |R| - w(c_{\alpha,\beta}^f).$$

The spectrum of f is the set

$$\Lambda_f := \{ W^f(\alpha, \beta) : \alpha, \beta \in R \}.$$

Fimear Byrne

Definition

Let R > S be Frobenius rings with trace map $T : {}_{S}R \longrightarrow {}_{S}S$. Let $f : R \longrightarrow R$. For each $\alpha, \beta \in R$, define

$$W^f(\alpha,\beta) := \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \chi^u(\alpha x + \beta f(x)) = |R| - w(c_{\alpha,\beta}^f).$$

The spectrum of f is the set

$$\Lambda_f := \{ W^f(\alpha, \beta) : \alpha, \beta \in R \}.$$

■ If $|\Lambda_f| = k + 1$ then C_f has exactly k non-zero weights.

Definition

Let R > S be Frobenius rings with trace map $T : {}_{S}R \longrightarrow {}_{S}S$. Let $f : R \longrightarrow R$. For each $\alpha, \beta \in R$, define

$$W^f(\alpha,\beta) := \frac{1}{|S^{\times}|} \sum_{u \in S^{\times}} \sum_{x \in R} \chi^u(\alpha x + \beta f(x)) = |R| - w(c_{\alpha,\beta}^f).$$

The spectrum of f is the set

$$\Lambda_f := \{ W^f(\alpha, \beta) : \alpha, \beta \in R \}.$$

- If $|\Lambda_f| = k + 1$ then C_f has exactly k non-zero weights.
- One of the weights of C_f is |R|.

Frank Sequences

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem

Let $R = S = GR(p^2, r)$, p prime. Write $a = a_0 + pa_1$ for each $a \in R$. Let

$$f:R\longrightarrow R:a\mapsto pa_0a_1.$$

Then

$$\Lambda_f = \{p^{2r}, p^r, 0\}.$$

Frank Sequences

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem

Let $R = S = GR(p^2, r)$, p prime. Write $a = a_0 + pa_1$ for each $a \in R$. Let

$$f:R\longrightarrow R:a\mapsto pa_0a_1.$$

Then

$$\Lambda_f = \{p^{2r}, p^r, 0\}.$$

• C_f has length $p^{2r} - 1$, size p^{3r} and weight enumerator

$$1+p^{r}(p^{r}-1)X^{p^{r}(p^{r}-1)}+(p^{r}-1)(p^{2r}+1)X^{p^{2r}}.$$

Frank Sequences

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem

Let $R = S = GR(p^2, r)$, p prime. Write $a = a_0 + pa_1$ for each $a \in R$. Let

$$f:R\longrightarrow R:a\mapsto pa_0a_1.$$

Then

$$\Lambda_f = \{p^{2r}, p^r, 0\}.$$

- C_f has length $p^{2r} 1$, size p^{3r} and weight enumerator $1 + p^r(p^r 1)X^{p^r(p^r 1)} + (p^r 1)(p^{2r} + 1)X^{p^{2r}}.$
- If we let $S = \mathbb{Z}_{p^n}, r > 1$ then

$$\Lambda_f = \{p^{2r}, p^r, -\frac{p^r}{p-1}, 0\}.$$

Chu Sequences

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem

Let
$$R = S = \mathbb{Z}_{2p}$$
, p prime. Let

$$f:R\longrightarrow R:a\mapsto a^2.$$

Then

$$\Lambda_f = \{2p, \frac{2p}{p-1}, 0\}.$$

Theorem

Let $R = S = \mathbb{Z}_{2p}$, p prime. Let

$$f:R\longrightarrow R:a\mapsto a^2.$$

Then

$$\Lambda_f = \{2p, \frac{2p}{p-1}, 0\}.$$

 C_f has length 2p-1, size $2p^2$ and weight enumerator

$$1 + (1 + 4(p-1) + (p-1)^2)X^{2p} + (p-1)^2X^{2p\frac{p-2}{p-1}}$$
.

Codes and Sequences Over Finite Rings

Eimear Byrne

■ Let R be a finite commutative local ring with unique maximal ideal M and residue field K = R/M.

Codes and Sequences Over Finite Rings

Eimear Byrne

- Let R be a finite commutative local ring with unique maximal ideal M and residue field K = R/M.
- Then each element $a \in R$ can be expressed as

$$a = a_m + a_t$$

for some unique $a_m \in M$, $a_t \in T$, where $T \setminus \{0\}$ is a cyclic subgroup of order $|K^{\times}|$ in R^{\times} .

Codes and Sequences Over Finite Rings

Eimear Byrne

- Let R be a finite commutative local ring with unique maximal ideal M and residue field K = R/M.
- Then each element $a \in R$ can be expressed as

$$a = a_m + a_t$$

for some unique $a_m \in M$, $a_t \in T$, where $T \setminus \{0\}$ is a cyclic subgroup of order $|K^{\times}|$ in R^{\times} .

This decomposition can be useful for evaluating the spectrum of a function.

Compatibility of χ with Aut(R)

Codes and Sequences Over Finite Rings

Eimear Byrne

Suppose that

$$\chi(\sigma(x)) = \chi(x), \ \forall \ x \in R.$$

Compatibility of χ with Aut(R)

Codes and Sequences Over Finite Rings

Eimear Byrne

Suppose that

$$\chi(\sigma(x)) = \chi(x), \ \forall \ x \in R.$$

Then, for example,

$$\chi(x\sigma(y)+\sigma(x)y)=\chi(x(\sigma(y)+\sigma^{-1}(y))).$$

Compatibility of χ with Aut(R)

Codes and Sequences Over Finite Rings

Eimear Byrne

Suppose that

$$\chi(\sigma(x)) = \chi(x), \ \forall \ x \in R.$$

Then, for example,

$$\chi(x\sigma(y)+\sigma(x)y)=\chi(x(\sigma(y)+\sigma^{-1}(y))).$$

Then

$$\chi(f(a)) = \chi(\sigma(a)a - \sigma(a_m)a_m)$$

$$= \chi(\sigma(a_t)a_t - \sigma(a_m)a_t - \sigma(a_t)a_m)$$

$$= \chi(\sigma(a_t)a_t)\chi((\sigma^{-1}(a_t) - \sigma(a_t))a_m).$$

Codes and Sequences Over Finite Rings

Eimear Byrne

Theorem

Let R be a finite local commutative Frobenius ring. Let $\sigma \in Aut(R)$ satisfy $\chi(\sigma(x)) = \chi(x)$ for all $x \in R$. Define

$$f:R\longrightarrow R:a\mapsto \sigma(a)a-\sigma(a_m)a_m.$$

Then

$$\Lambda_f = \{ |R|, |M|, \frac{|R||M|}{|R^{\times}|}, 0 \}.$$

Theorem

Let R be a finite local commutative Frobenius ring. Let $\sigma \in Aut(R)$ satisfy $\chi(\sigma(x)) = \chi(x)$ for all $x \in R$. Define

$$f: R \longrightarrow R: a \mapsto \sigma(a)a - \sigma(a_m)a_m$$
.

Then C_f has length |R|-1 and non-zero weights

$$\{|R|,|R|-|M|,|R|(1-\frac{|M|}{|R^{\times}|})\}.$$

More

Codes and Sequences Over Finite Rings

Eimear Byrr

- Find more functions on local rings that give codes with small spectra.
- Determine functions that yield 2-weight codes (especially modular or projective regular codes).
- Nonlinearity.

Applications - Strongly Regular Graphs

Codes and Sequences Over Finite Rings

Eimear Byrn

