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A Binary Code

Codes and Let (n,s) =1 and let d = 2° + 1. Consider the binary code:

Sequences
Over Finite

Rings C = {cap(x) = Tr(ax) + Tr(ﬁxd),a,ﬁ € GF(2")}.
Eimear Byrne
C has generator matrix

|: X1 | X2 Xon_1 :|
d d d )
X1 | X2 Xon_1

and

WH(Ca,ﬁ) — |2 Z (_1)Tr(O(X)+TI”(,BXd) /2.
xEGF(27)

C has length 27 — 1. For odd n it has dimension 2n and 3
non-zero weights:

n—1

2}.

n—1

{2n—1 —2% , 2n—1, 2n—1 +2
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Over Finite For a finite ring R, R := Homz(R,C*), is an R-R bimodule:
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x(x) = x(rx), x"(x) = x(xr)

forall x,r € R,x € R.

The following are equivalent definitions:
m R is a Frobenius ring
m socgR is left principal,
m r(R/rad R) ~ socgrR,
m RR~ RfA?

Then pR = g(x) for some (left) generating character .
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The following are examples of Frobenius rings.

integer residue rings Zn,
any semi-simple ring

principal ideal rings

[
[
[
m direct products of Frobenius rings
® matrix rings over Frobenius rings
[

group rings over Frobenius rings
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A weight w : R — Q is (left) homogeneous, if w(0) = 0 and
If Rx = Ry then w(x) = w(y) for all x,y € R.

There exists a real number « such that

> wly) = v[Rx|  forall x € R\ {0}.
YERX
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Examples of Homogeneous Weights

Codes and E I
Sequences Xam p €
Over Finite

Rings On every finite field Fg; the Hamming weight is a homogeneous
S weight of average value v = q%ql.

On Za the Lee weight is homogeneous with v = 1.

x |0|1|2]3
Wiee(x) |0 |12 |1

2 $2R = {0,2}

0 ¢{0}
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X 01|23 [4|5|6|7|8|9
Whom(x) 0 % ?1 7?; % 2 % % % %
R=Zlo
3/4
{0,5}=5R 2R={0,2,4,6,8}
2 5/4
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Example

On a local Frobenius ring R with g-element residue field the
weight

0 : x=0,
w:R—R, x— % . x €soc(R), x #0,
1 . otherwise,

is a homogeneous weight of average value v = 1.



Homogeneous Weights of FFRs

Codes and

Sequences

Over Finite
Rings

Eimear Byrne

Theorem (Honold)

Let R be a finite Frobenius ring with generating character .
Then the homogeneous weights on R are precisely the functions

w: R — R, XHv[l—ﬁ Z X(xu)]
ueRX

where 7y is a real number.



Characters and Trace Maps

Codes and

Sequences

Over Finite
Rings

Let R > S be Frobenius rings.

Eimear Byrne

Definition

Let T be an S-module epimorphism T : sR — 55 whose
kernel contains no non-trivial left ideal of R.
We say that T is a trace map from R onto S.
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Definition

Let T be an S-module epimorphism T : sR — 55 whose
kernel contains no non-trivial left ideal of R.
We say that T is a trace map from R onto S.

A generating character ¢ € S determines a generating
character x € R as:

X(x)=d(T(x))VxeR.
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Mu(Zm)

T

Lim C*

B ®(x) = w*,w a primitive mth root of unity in C*

m T is the usual trace map from M,(Z,,) onto Z,.
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GR(p", sk)
Tr/s
GR(p",s)

Ts/p

Ly — -
m ®(x) = w*,w a primitive p"th root of unity in C*
mo:R—R:Y " plai— >0, pal € Aut(R)
mTrs:R—S:aw a+o%(a)+ -+ o5k"1(a)
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A Subring Subcode
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Over Finite For any map f : R — R, we define the left S-linear subring
R subcode

Eimear Byrne

Cf:{C;7BZR—>SZXr—> T(ax+ pBf(x)) : a, B € R}.

We compute the weight of each codeword as:

wichg) = Y wichs(x)

xER

~ IR~ |51| S 3 04T (ax + 57(x)

ueS*x xeR

= |R| —|51X‘ 3 3 xH(ax + BF(x).

ueS* xeR
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The spectrum of f is the set

Ar = {Wf(a,B) : o, € R}.
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The Spectrum of f : R— R
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ings
Let R > S be Frobenius rings with trace map T : sR — sS.
Let f : R— R. For each o, 8 € R, define
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W (o, B) = ﬁ S5 x¥(ax + Bf(x)) = |R| — w(cl. 5)

ueS* xeR

The spectrum of f is the set

Ar = {Wf(a,B) : o, € R}.

m If |Af| = k + 1 then C¢ has exactly k non-zero weights.
m One of the weights of Cf is |R)|.
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Rings Let R =S = GR(p?,r), p prime. Write a = ag + pay for each
Eimear Byrne a e R Let

f:R— R:aw— paga;.

Then
A ={p*",p",0}.

m Cr has length p?" — 1, size p3" and weight enumerator

1+ p"(p" = DXP D 4 (pr — 1)(p* + 1)XP”.

mIfwelet S =7Zpn,r>1then

2 P’
N = " p", - 0}.
f {p P p 1’ }
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Let R=S5 = Zyp, p prime. Let

f:R— R:aw— a°

Then

2p
Ar ={2p,——,0}.
f {p’p—l’o}
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Let R=S5 = Zyp, p prime. Let

2

f:R—R:a—a

Then 5
p
N ={2p, ——,0}.
f { P, p— 1’ }
Cr has length 2p — 1, size 2p? and weight enumerator

L (L 4(p — 1) + (p— D)X + (p— 12XP5.
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EilneanlByine m Let R be a finite commutative local ring with unique
maximal ideal M and residue field K = R/M.

m Then each element a € R can be expressed as

a=am+a:

for some unique ap, € M, a; € T, where T\{0} is a cyclic
subgroup of order |K*| in R*.

m This decomposition can be useful for evaluating the
spectrum of a function.
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Rings Suppose that
Eimear Byrne X(O’(X)) = X(X)’ VX S R

Then, for example,

x(xo(y) + o(x)y) = x(x(a(y) + 07 (¥))).



Compatibility of x with Aut(R)

eeeeeeee

Suppose that
x(o(x)) =x(x), Vx€R.
Then, for example,
x(xa(y) + a(x)y) = x(x(a(y) + o~ (¥)))-
Then
x(f(a)) = x(o(a)a—o(am)am)

= x(o(at)ar — o(am)ar — o(at)am)
= x(o(ar)ar)x((o (ar) — o(ar))am)-
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Theorem

Let R be a finite local commutative Frobenius ring. Let
o € Aut(R) satisfy x(o(x)) = x(x) for all x € R. Define

f:R— R:a—o(a)a—o(am)am.

Then
|R|IM|

Ae = {|R|a|M|7 |RX‘ ,0}




Local Commutative Rings

Codes and

Sequences

Over Finite
Rings

Eimear Byrne Theorem

Let R be a finite local commutative Frobenius ring. Let
o € Aut(R) satisfy x(o(x)) = x(x) for all x € R. Define

f:R— R:aw— o(a)a—o(am)am.
Then C¢ has length |R| — 1 and non-zero weights

L4

{IRI, IRl = [M], |RI(1 — |RX|)}‘
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m Find more functions on local rings that give codes with
small spectra.

m Determine functions that yield 2-weight codes (especially
modular or projective regular codes).

m Nonlinearity.



Applications - Strongly Regular Graphs




