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classification of 2 — (7,3, \; g)-designs for g = 2,3 with small A
o T. ltoh (1998):
2 —(ml,3,q%(q'%/(q — 1); q)-designs for any m >3
which admits the action of SL(m, q')
e M. Braun (2005):

3 —(8,4,11,2)-design
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g-Steiner Systems and Network Codes

Definition

At —(n, k,1;q)-design is called a g-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such
structures and presented connections between Steiner systems and
g-Steiner systems in 2002.

Anyway till this day no g-Steiner system has been found yet!

Application of g-analogs of designs:
= NETWORK CODING!

@ Error-correcting network code = a set of k-subspaces in GF(q)" such
that each t-subspace is in at most 1 k-subspace

o Perfect code = a set of k-subspaces in GF(q)" such that each
t-subspace is in exactly 1 k-subspace



M := incidence matrix between k-subspaces and t-subspaces of GF(q)"

M | 1 if t-subspace T < k-subspace K
K= 0 else
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Solve the diophantine system of equations
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M := incidence matrix between k-subspaces and t-subspaces of GF(q)"
M | 1 if t-subspace T < k-subspace K
K= 0 else

Solve the diophantine system of equations

A
M . )_(’ = :
A
= 0/1-solution X = t — (n, k, A; q)-design

PROBLEM: Size of M grows too fast for increasing parameters!
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Construction — Kramer-Mesner method

Prescribing a group G of automorphisms of the design reduces the size of
M

= shrinked Kramer-Mesner matrix M := incidence matrix between the
G-orbits of k-subspaces and the G-orbits of t-subspaces of GF(q)"
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Construction — Kramer-Mesner method

Prescribing a group G of automorphisms of the design reduces the size of

M

= shrinked Kramer-Mesner matrix M := incidence matrix between the
G-orbits of k-subspaces and the G-orbits of t-subspaces of GF(q)"

Solve the new diophantine system of equations

A
MC .= :
A

= 0/1-solution X = t — (n, k, \; q)-design



Existing Implementation

Implementation with Double Cosets for the construction of G\ [GF a)" }

Transform the problem of constructing G\ [GF,((")”} into a double coset
q
problem:

&\ [GF(") ] . G\GL(n. )/ GL(M, ) ey

q
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Existing Implementation

Implementation with Double Cosets for the construction of G\ [GF a)" }

Transform the problem of constructing G\ [GF,((")”} into a double coset
q

problem:

&\ [GF(") ] . G\GL(n. )/ GL(M, ) ey

q

PROBLEM: Works just a for a few selected groups
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New Implementation

@ Schreier-Sims algorithm for G < GL(n, q)

o Direct construction of G\ [GF,((")"} via the laddergame
q
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Schreier-Sims Algorithm for Matrix Groups

@ compute a base and strong generating set (BSGS) of G < GL(n, q)
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Schreier-Sims Algorithm for Matrix Groups

@ compute a base and strong generating set (BSGS) of G < GL(n, q)
o G operates on the set of standard basis vectors of GF(q)"
o stabilizer chain of G in terms of the base

G=G2G=>->G =1

@ transversal chain of G

ThWw>Ty,>--->T,, T,€T(Gi/Gjs1)

, as Input for Construction of G\ [GFIEq)"]q
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Homomorphism Principle

¢ X — Y is a surjective G-homomorphism
X

Y

10/16



Homomorphism Principle

¢ X — Y is a surjective G-homomorphism
X

Y

e y) N/ (Y)

\—/\

1.The preimages of y and y’
cut the same orbits of G in X
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Homomorphism Principle

¢ X — Y is a surjective G-homomorphism
X

Y

e y) N/ (Y)

= g€ 1.The preimages of y and y’
cut the same orbits of G in X

\ ) 2. Two elements of p~%(y) are in the same
G-orbit iff they are in the same orbit under G,
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l.case: get G\ X from G\\Y by splitting orbits

X

AR

Y

A,
gz

N

11/16



l.case: get G\ X from G\\Y by splitting orbits

X
v t(n)

/ )
\ /

N

Y

A,
gz

N

11/16



l.case: get G\ X from G\\Y by splitting orbits

X

(o7 () \

RS
N

N

Y

A,
gz

N

11/16



l.case: get G\ X from G\\Y by splitting orbits
X

/90_1()/1) \ Y

RS
N

</-?<P‘>__1()/2) /yg

N

11/16



l.case: get G\ X from G\\Y by splitting orbits
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l.case: get G\ X from G\\Y by splitting orbits

Y

— i)

\ /)
e \yl_/
\ t ) = UG\ () € T(G\X)

2.case: get G\\Y from G\ X by fusing orbits
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Laddergame

y < GF(q)" | dim(y) = i}
(v,t) |y € Vi1, t € Y1, t Ly}

Yii=A{
X; = {
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Laddergame
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Laddergame
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L G\\Yl
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.‘/gol/c G\Y1
G\ Xz
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Laddergame

G\ Y2
]
% G\\Yl
G\ X2
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Laddergame

® G\\Y2
® G\
G\ Xz
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Laddergame

G\\Y3

d3
@ G\ Y2

G\ X3 0
@ G\Y1

G\ X2
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Laddergame

G\ Yk

/
G\\Xk . G\\Y3
G\ Y2

G\"1

G\ X2
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New Results

parameters ‘ |G| ‘ dim Mgk ‘ A
2—(6,3,\,3) | 336 | 93 x 234 16
2 (8,4,1,2) | 1020 | 15 x 217 35,56, 70, 105, 126, 161,
176,196, 245, 266, 280, 315
2—(9,3,)2) | 1533 | 31 x 529 21,22.42,43,63

2-(9,4,\;2) | 4509 | 11 x 725 |  21,63,84, 126, 147,189, 210,
252,273, 315, 336, 378, 399, 462
504, 525, 567, 588, 651, 693
714,756, 777,840, 882, 903
945, 966, 1008, 1029, 1071, 1092
1134,1155,1197, 1218, 1281, 1323
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Open Problems

@ g-Steiner systems 7
@ Designs with t > 37
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Open Problems

@ g-Steiner systems 7
@ Designs with t > 37

Thank you very much for your attention!
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