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q-Analogs of Combinatorial Designs

Definition

q-analog of t − (n, k , λ)-design

⇐⇒

t − (n, k , λ; q)-design

⇐⇒

design of finite fields

⇐⇒

B ⊆
[

GF (q)n

k

]
q

: |{K ∈ B | T ≤ K}| = λ ∀ T ∈
[

GF (q)n

t

]
q
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History of Designs over Finite Fields

S. Thomas (1987):

2− (n, 3, 7; 2)-designs ∀ n ≥ 7 ∈ N with n ≡ ± 1 mod 6

H. Suzuki (1992):

2− (n, 3, q2 + q + 1; q)-design ∀ n ≥ 7 with n ≡ ± 1 mod 6
and q prime

M. Miyakawa, A. Munemasa and S. Yoshiara (1995):

classification of 2− (7, 3, λ; q)-designs for q = 2, 3 with small λ

T. Itoh (1998):

2− (ml , 3, q3(ql−5/(q − 1); q)-designs for any m ≥ 3
which admits the action of SL(m, ql)

M. Braun (2005):

3− (8, 4, 11, 2)-design
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q-Steiner Systems and Network Codes

Definition

A t − (n, k , 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such
structures and presented connections between Steiner systems and
q-Steiner systems in 2002.
Anyway till this day no q-Steiner system has been found yet!

Application of q-analogs of designs:
⇒ NETWORK CODING!

Error-correcting network code = a set of k-subspaces in GF (q)n such
that each t-subspace is in at most 1 k-subspace

Perfect code = a set of k-subspaces in GF (q)n such that each
t-subspace is in exactly 1 k-subspace
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Construction

M := incidence matrix between k-subspaces and t-subspaces of GF (q)n

MT ,K :=

{
1 if t-subspace T ≤ k-subspace K
0 else

.

Solve the diophantine system of equations

M · ~x =

λ...
λ


⇒ 0/1-solution ~x = t − (n, k , λ; q)-design

PROBLEM: Size of M grows too fast for increasing parameters!

5 / 16



Construction

M := incidence matrix between k-subspaces and t-subspaces of GF (q)n

MT ,K :=

{
1 if t-subspace T ≤ k-subspace K
0 else

.

Solve the diophantine system of equations

M · ~x =

λ...
λ


⇒ 0/1-solution ~x = t − (n, k , λ; q)-design

PROBLEM: Size of M grows too fast for increasing parameters!

5 / 16



Construction

M := incidence matrix between k-subspaces and t-subspaces of GF (q)n

MT ,K :=

{
1 if t-subspace T ≤ k-subspace K
0 else

.

Solve the diophantine system of equations

M · ~x =

λ...
λ


⇒ 0/1-solution ~x = t − (n, k , λ; q)-design

PROBLEM: Size of M grows too fast for increasing parameters!

5 / 16



Construction – Kramer-Mesner method

Prescribing a group G of automorphisms of the design reduces the size of
M

⇒ shrinked Kramer-Mesner matrix MG := incidence matrix between the
G -orbits of k-subspaces and the G -orbits of t-subspaces of GF (q)n

Solve the new diophantine system of equations

MG · ~x =

λ...
λ


⇒ 0/1-solution ~x = t − (n, k , λ; q)-design
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Existing Implementation

Implementation with Double Cosets for the construction of G\\
[

GF (q)n

k

]
q

Transform the problem of constructing G\\
[

GF (q)n

k

]
q

into a double coset

problem:

G\\
[

GF (q)n

k

]
q

� G\GL(n, q)/GL(n, q)〈e1,...,ek 〉

PROBLEM: Works just a for a few selected groups
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New Implementation

Schreier-Sims algorithm for G ≤ GL(n, q)

Direct construction of G\\
[

GF (q)n

k

]
q

via the laddergame

8 / 16



Schreier-Sims Algorithm for Matrix Groups

compute a base and strong generating set (BSGS) of G ≤ GL(n, q)

G operates on the set of standard basis vectors of GF (q)n

stabilizer chain of G in terms of the base

G = G1 ≥ G2 ≥ · · · ≥ Gn = 1

transversal chain of G

T1 ≥ T2 ≥ · · · ≥ Tn , Ti ∈ T (Gi/Gi+1)

⇒ Ti(i=1,...,n)
as Input for Construction of G\\

[
GF (q)n

k

]
q
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Homomorphism Principle

ϕ : X → Y is a surjective G -homomorphism'

&

$

%

'

&

$

%

X

Y

s s
y y ′

'

&

$

%
ϕ−1(y)

'

&

$

%
ϕ−1(y ′)

I

�

1.The preimages of y and y ′

cut the same orbits of G in X

s s
x gx
R

g

⇒ g ∈ Gy

2.Two elements of ϕ−1(y) are in the same
G -orbit iff they are in the same orbit under Gy
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1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)r rr �
�
�
�

ϕ−1(y2)r rr�
�
�
�ϕ
−1(y3)r rrAA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)

r rr �
�
�
�

ϕ−1(y2)r rr�
�
�
�ϕ
−1(y3)r rrAA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)r rr

�
�
�
�

ϕ−1(y2)r rr�
�
�
�ϕ
−1(y3)r rrAA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)r rr �
�
�
�

ϕ−1(y2)r rr

�
�
�
�ϕ
−1(y3)r rrAA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)r rr �
�
�
�

ϕ−1(y2)r rr�
�
�
�ϕ
−1(y3)r rr

AA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



1.case: get G\\X from G\\Y by splitting orbits'

&

$

%

'

&

$

%

X

Y

r r
r

y3

y2

y1
�
�

@@�����
@
@@

�
�
�
�

ϕ−1(y1)r rr �
�
�
�

ϕ−1(y2)r rr�
�
�
�ϕ
−1(y3)r rrAA

�
��

��
��
�
��
��

hhhhhhh
��
�
@@
�
��

⇒
⋃
i

(Gyi\\ϕ−1(yi )) ∈ T (G\\X )

2.case: get G\\Y from G\\X by fusing orbits

11 / 16



Laddergame

Yi := {y ≤ GF (q)n | dim(y) = i}

Xi := {(y , t) | y ∈ Yi−1, t ∈ Y1, t * y}

Downstep – Splitting orbits

ϕi : Xi → Yi−1, (y , t) 7→ y

G\\Yi−1 ⇒ G\\Xi

Upstep – Fusing orbits

δi : Xi → Yi , (y , t) 7→ 〈y ∪ t〉

G\\Xi ⇒ G\\Yi

12 / 16
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Laddergame

sG\\Y1

������9
ϕ1

G\\X2
s

δ2

�
�
�
�
�
�> G\\Y2
s������9 ϕ2

G\\X3
s

δ3

�
�
�
�
�
�> G\\Y3
s��9...

��9
G\\Xk
s

δk

�
�
�
�
�
�> G\\Yk
s
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New Results

parameters |G | dim MG
t,k λ

2− (6, 3, λ; 3) 336 93× 234 16

2− (8, 4, λ; 2) 1020 15× 217 35, 56, 70, 105, 126, 161,
176, 196, 245, 266, 280, 315

2− (9, 3, λ; 2) 1533 31× 529 21, 22, 42, 43, 63

2− (9, 4, λ; 2) 4599 11× 725 21, 63, 84, 126, 147, 189, 210,
252, 273, 315, 336, 378, 399, 462

504, 525, 567, 588, 651, 693
714, 756, 777, 840, 882, 903

945, 966, 1008, 1029, 1071, 1092
1134, 1155, 1197, 1218, 1281, 1323
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Open Problems

q-Steiner systems ?

Designs with t > 3 ?

Thank you very much for your attention!
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