# Construction of $q$-analogs of combinatorial designs 

Stefanie Braun<br>University of Bayreuth<br>ALCOMA'10 Thurnau

13. April 2010

## $q$-Analogs of Combinatorial Designs

## Definition

$$
q \text {-analog of } t-(n, k, \lambda) \text {-design }
$$

## $q$-Analogs of Combinatorial Designs

## Definition

$$
q \text {-analog of } t-(n, k, \lambda) \text {-design }
$$

$$
t-(n, k, \lambda ; q)-d e s i g n
$$

## $q$-Analogs of Combinatorial Designs

## Definition

$$
q \text {-analog of } t-(n, k, \lambda) \text {-design }
$$



$$
t-(n, k, \lambda ; q)-d e s i g n
$$


design of finite fields

## $q$-Analogs of Combinatorial Designs

## Definition

$$
q \text {-analog of } t-(n, k, \lambda) \text {-design }
$$

$$
t-(n, k, \lambda ; q)-\text { design }
$$


design of finite fields

$$
\mathcal{B} \subseteq\left[\begin{array}{c}
G F(q)^{n} \\
k
\end{array}\right]_{q}:|\{K \in \mathcal{B} \mid T \leq K\}|=\lambda \quad \forall T \in\left[\begin{array}{c}
G F(q)^{n} \\
t
\end{array}\right]_{q}
$$

## History of Designs over Finite Fields

- S. Thomas (1987):

$$
2 \text { - (n, 3, 7; 2)-designs } \forall n \geq 7 \in \mathbb{N} \text { with } n \equiv \pm 1 \bmod 6
$$

## History of Designs over Finite Fields

- S. Thomas (1987):

$$
2-(n, 3,7 ; 2) \text {-designs } \forall n \geq 7 \in \mathbb{N} \text { with } n \equiv \pm 1 \bmod 6
$$

- H. Suzuki (1992):

$$
\begin{gathered}
2-\left(n, 3, q^{2}+q+1 ; q\right) \text {-design } \forall n \geq 7 \text { with } n \equiv \pm 1 \bmod 6 \\
\text { and } q \text { prime }
\end{gathered}
$$

- M. Miyakawa, A. Munemasa and S. Yoshiara (1995):
classification of $2-(7,3, \lambda ; q)$-designs for $q=2,3$ with small $\lambda$
- T. Itoh (1998):
$2-\left(m l, 3, q^{3}\left(q^{I-5} /(q-1) ; q\right)\right.$-designs for any $m \geq 3$ which admits the action of $\operatorname{SL}\left(m, q^{\prime}\right)$


## History of Designs over Finite Fields

- S. Thomas (1987):

$$
2-(n, 3,7 ; 2) \text {-designs } \forall n \geq 7 \in \mathbb{N} \text { with } n \equiv \pm 1 \bmod 6
$$

- H. Suzuki (1992):

$$
\begin{gathered}
2-\left(n, 3, q^{2}+q+1 ; q\right) \text {-design } \forall n \geq 7 \text { with } n \equiv \pm 1 \bmod 6 \\
\text { and } q \text { prime }
\end{gathered}
$$

- M. Miyakawa, A. Munemasa and S. Yoshiara (1995):
classification of $2-(7,3, \lambda ; q)$-designs for $q=2,3$ with small $\lambda$
- T. Itoh (1998):

$$
\begin{gathered}
2-\left(m l, 3, q^{3}\left(q^{I-5} /(q-1) ; q\right) \text {-designs for any } m \geq 3\right. \\
\text { which admits the action of } S L\left(m, q^{\prime}\right)
\end{gathered}
$$

- M. Braun (2005):

$$
3-(8,4,11,2) \text {-design }
$$

## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.

## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.
Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and $q$-Steiner systems in 2002.

## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.
Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and $q$-Steiner systems in 2002.
Anyway till this day no $q$-Steiner system has been found yet!

## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.
Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and $q$-Steiner systems in 2002.
Anyway till this day no $q$-Steiner system has been found yet!
Application of $q$-analogs of designs:
$\Rightarrow$ NETWORK CODING!

## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.
Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and $q$-Steiner systems in 2002.
Anyway till this day no $q$-Steiner system has been found yet!
Application of $q$-analogs of designs:
$\Rightarrow$ NETWORK CODING!

- Error-correcting network code $=$ a set of $k$-subspaces in $G F(q)^{n}$ such that each $t$-subspace is in at most $1 k$-subspace


## $q$-Steiner Systems and Network Codes

## Definition

A $t-(n, k, 1 ; q)$-design is called a $q$-Steiner system.
Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and $q$-Steiner systems in 2002.
Anyway till this day no $q$-Steiner system has been found yet!
Application of $q$-analogs of designs:

## $\Rightarrow$ NETWORK CODING!

- Error-correcting network code $=$ a set of $k$-subspaces in $G F(q)^{n}$ such that each $t$-subspace is in at most $1 k$-subspace
- Perfect code $=$ a set of $k$-subspaces in $G F(q)^{n}$ such that each $t$-subspace is in exactly $1 k$-subspace


## Construction

$\mathcal{M}:=$ incidence matrix between $k$-subspaces and $t$-subspaces of $G F(q)^{n}$ $\mathcal{M}_{T, K}:=\left\{\begin{array}{ll}1 & \text { if } t \text {-subspace } T \leq k \text {-subspace } K \\ 0 & \text { else }\end{array}\right.$.

## Construction

$\mathcal{M}:=$ incidence matrix between $k$-subspaces and $t$-subspaces of $G F(q)^{n}$ $\mathcal{M}_{T, K}:=\left\{\begin{array}{ll}1 & \text { if } t \text {-subspace } T \leq k \text {-subspace } K \\ 0 & \text { else }\end{array}\right.$.

Solve the diophantine system of equations

$$
\mathcal{M} \cdot \vec{x}=\left(\begin{array}{c}
\lambda \\
\vdots \\
\lambda
\end{array}\right)
$$

$\Rightarrow 0 / 1$-solution $\vec{x}=t-(n, k, \lambda ; q)$-design

## Construction

$\mathcal{M}:=$ incidence matrix between $k$-subspaces and $t$-subspaces of $G F(q)^{n}$ $\mathcal{M}_{T, K}:=\left\{\begin{array}{ll}1 & \text { if } t \text {-subspace } T \leq k \text {-subspace } K \\ 0 & \text { else }\end{array}\right.$.

Solve the diophantine system of equations

$$
\mathcal{M} \cdot \vec{x}=\left(\begin{array}{c}
\lambda \\
\vdots \\
\lambda
\end{array}\right)
$$

$\Rightarrow 0 / 1$-solution $\vec{x}=t-(n, k, \lambda ; q)$-design
PROBLEM: Size of $\mathcal{M}$ grows too fast for increasing parameters!

## Construction - Kramer-Mesner method

Prescribing a group $G$ of automorphisms of the design reduces the size of M
$\Rightarrow$ shrinked Kramer-Mesner matrix $\mathcal{M}^{G}:=$ incidence matrix between the $G$-orbits of $k$-subspaces and the $G$-orbits of $t$-subspaces of $G F(q)^{n}$

## Construction - Kramer-Mesner method

Prescribing a group $G$ of automorphisms of the design reduces the size of M
$\Rightarrow$ shrinked Kramer-Mesner matrix $\mathcal{M}^{G}:=$ incidence matrix between the $G$-orbits of $k$-subspaces and the $G$-orbits of $t$-subspaces of $G F(q)^{n}$

Solve the new diophantine system of equations

$$
\mathcal{M}^{G} \cdot \vec{x}=\left(\begin{array}{c}
\lambda \\
\vdots \\
\lambda
\end{array}\right)
$$

$\Rightarrow 0 / 1$-solution $\vec{x}=t-(n, k, \lambda ; q)$-design

## Existing Implementation

Implementation with Double Cosets for the construction of $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$ Transform the problem of constructing $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$ into a double coset problem:

$$
G \backslash\left[\begin{array}{c}
G F(q)^{n} \\
k
\end{array}\right]_{q} \rightarrow G \backslash G L(n, q) / G L(n, q)_{\left\langle e_{1}, \ldots, e_{k}\right\rangle}
$$

## Existing Implementation

Implementation with Double Cosets for the construction of $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$
Transform the problem of constructing $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$ into a double coset problem:

$$
G \backslash\left[\begin{array}{c}
G F(q)^{n} \\
k
\end{array}\right]_{q} \rightarrow G \backslash G L(n, q) / G L(n, q)_{\left\langle e_{1}, \ldots, e_{k}\right\rangle}
$$

PROBLEM: Works just a for a few selected groups

## New Implementation

- Schreier-Sims algorithm for $G \leq G L(n, q)$
- Direct construction of $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$ via the laddergame


## Schreier-Sims Algorithm for Matrix Groups

- compute a base and strong generating set (BSGS) of $G \leq G L(n, q)$


## Schreier-Sims Algorithm for Matrix Groups

- compute a base and strong generating set (BSGS) of $G \leq G L(n, q)$
- $G$ operates on the set of standard basis vectors of $G F(q)^{n}$


## Schreier-Sims Algorithm for Matrix Groups

- compute a base and strong generating set (BSGS) of $G \leq G L(n, q)$
- $G$ operates on the set of standard basis vectors of $G F(q)^{n}$
- stabilizer chain of $G$ in terms of the base

$$
G=G_{1} \geq G_{2} \geq \cdots \geq G_{n}=1
$$

## Schreier-Sims Algorithm for Matrix Groups

- compute a base and strong generating set (BSGS) of $G \leq G L(n, q)$
- $G$ operates on the set of standard basis vectors of $G F(q)^{n}$
- stabilizer chain of $G$ in terms of the base

$$
G=G_{1} \geq G_{2} \geq \cdots \geq G_{n}=1
$$

- transversal chain of $G$

$$
T_{1} \geq T_{2} \geq \cdots \geq T_{n}, \quad T_{i} \in \mathcal{T}\left(G_{i} / G_{i+1}\right)
$$

## Schreier-Sims Algorithm for Matrix Groups

- compute a base and strong generating set (BSGS) of $G \leq G L(n, q)$
- $G$ operates on the set of standard basis vectors of $G F(q)^{n}$
- stabilizer chain of $G$ in terms of the base

$$
G=G_{1} \geq G_{2} \geq \cdots \geq G_{n}=1
$$

- transversal chain of $G$

$$
T_{1} \geq T_{2} \geq \cdots \geq T_{n}, \quad T_{i} \in \mathcal{T}\left(G_{i} / G_{i+1}\right)
$$

$\Rightarrow T_{i_{(i=1, \ldots, n)}}$ as Input for Construction of $G \backslash\left[\begin{array}{c}G F(q)^{n} \\ k\end{array}\right]_{q}$

## Homomorphism Principle

$\varphi: X \rightarrow Y$ is a surjective $G$-homomorphism


## Homomorphism Principle

$\varphi: X \rightarrow Y$ is a surjective $G$-homomorphism


1. The preimages of $y$ and $y^{\prime}$ cut the same orbits of $G$ in $X$

## Homomorphism Principle

$\varphi: X \rightarrow Y$ is a surjective $G$-homomorphism

$\Rightarrow g \in G_{y}$

1. The preimages of $y$ and $y^{\prime}$ cut the same orbits of $G$ in $X$
2. Two elements of $\varphi^{-1}(y)$ are in the same $G$-orbit iff they are in the same orbit under $G_{y}$
1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

1.case: get $G \backslash X$ from $G \backslash Y$ by splitting orbits

$\Rightarrow \bigcup_{i}\left(G_{i} \| \varphi^{-1}\left(y_{i}\right)\right) \in \mathcal{T}(G \backslash X)$
2.case: get $G \backslash Y$ from $G \backslash X$ by fusing orbits

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& X_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& x_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y
$$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& x_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\begin{gathered}
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y \\
G \backslash Y_{i-1}
\end{gathered}
$$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& x_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\begin{gathered}
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y \\
G \backslash Y_{i-1} \Rightarrow G \backslash X_{i}
\end{gathered}
$$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& X_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\begin{gathered}
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y \\
G \backslash Y_{i-1} \Rightarrow G \backslash X_{i}
\end{gathered}
$$

- Upstep - Fusing orbits

$$
\delta_{i}: X_{i} \rightarrow Y_{i},(y, t) \mapsto\langle y \cup t\rangle
$$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& X_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\begin{gathered}
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y \\
G \backslash Y_{i-1} \Rightarrow G \backslash X_{i}
\end{gathered}
$$

- Upstep - Fusing orbits

$$
\delta_{i}: X_{i} \rightarrow Y_{i},(y, t) \mapsto\langle y \cup t\rangle
$$

$G \backslash X_{i}$

## Laddergame

$$
\begin{aligned}
& Y_{i}:=\left\{y \leq G F(q)^{n} \mid \operatorname{dim}(y)=i\right\} \\
& X_{i}:=\left\{(y, t) \mid y \in Y_{i-1}, t \in Y_{1}, t \nsubseteq y\right\}
\end{aligned}
$$

- Downstep - Splitting orbits

$$
\begin{gathered}
\varphi_{i}: X_{i} \rightarrow Y_{i-1},(y, t) \mapsto y \\
G \backslash Y_{i-1} \Rightarrow G \backslash X_{i}
\end{gathered}
$$

- Upstep - Fusing orbits

$$
\begin{gathered}
\delta_{i}: X_{i} \rightarrow Y_{i},(y, t) \mapsto\langle y \cup t\rangle \\
G \backslash X_{i} \Rightarrow G \backslash Y_{i}
\end{gathered}
$$

## Laddergame

- $G \backslash Y_{1}$


## Laddergame

## $\varphi_{1} \bullet G \backslash Y_{1}$ <br> $G \backslash X_{2}$

## Laddergame



## Laddergame



## Laddergame



## Laddergame



## Laddergame



## New Results

| parameters | $\|G\|$ | $\operatorname{dim} \mathcal{M}_{t, k}^{G}$ | $\lambda$ |
| :---: | :---: | :---: | :---: |
| $2-(6,3, \lambda ; 3)$ | 336 | $93 \times 234$ | 16 |
| $2-(8,4, \lambda ; 2)$ | 1020 | $15 \times 217$ | $35,56,70,105,126,161$, |
|  |  |  | $176,196,245,266,280,315$ |
| $2-(9,3, \lambda ; 2)$ | 1533 | $31 \times 529$ | $21,22,42,43,63$ |
| $2-(9,4, \lambda ; 2)$ | 4599 | $11 \times 725$ | $21,63,84,126,147,189,210$, |
|  |  |  | $252,273,315,336,378,399,462$ |
|  |  |  | $504,525,567,588,651,693$ |
|  |  |  | $714,756,777,840,882,903$ |
|  |  |  | $945,966,1008,1029,1071,1092$ |
|  |  |  |  |

## Open Problems

- $q$-Steiner systems ?
- Designs with $t>3$ ?


## Open Problems

- $q$-Steiner systems ?
- Designs with $t>3$ ?

Thank you very much for your attention!

## References

M. Braun, A. Kerber, R. Laue: Systematic construction of $q$-analogs of designs, Designs, Codes and Cryptography, 34(1): 55-70, 2005.
G. Butler: The Schreier Algorithm for Matrix Groups, SYMSAC '76, 167-170, 1976
T.Etzion, M. Schwartz: Codes and Anticodes in the Grassmann Graph, Journal of Combinatorial Theory, A 97: 27-42, 2002
A. Kohnert, S. Kurz: Construction of Large Constant Dimension Codes With a Prescribed Minimus Distance, Lecture Notes in Computer Science, 31-42, 2008
E. S. Kramer, D. M. Mesner: t-Designs on Hypergraphs, Discrete Mathematics 15: 263-296, 1976
R. Laue: Construction of Combinatorial Objects - A Tutorial, Bayreuther Mathematische Schriften 43: 53-96, 1993
S. Thomas: Designs over Finite Fields, Geom. Ded. 24: 237-242, 1987

