Construction of q-analogs of combinatorial designs

Stefanie Braun

University of Bayreuth

ALCOMA'10 Thurnau

13. April 2010

Definition

q-analog of $t - (n, k, \lambda)$ -design

Definition

q-analog of
$$t - (n, k, \lambda)$$
-design

$$t - (n, k, \lambda; a)$$
-design

Definition

q-analog of
$$t - (n, k, \lambda)$$
-design

$t - (n, k, \lambda; q)$ -design

\iff

design of finite fields

Definition

q-analog of
$$t - (n, k, \lambda)$$
-design

$$t - (n, k, \lambda; q)$$
-design

 \Leftrightarrow

$$\iff$$

design of finite fields

$$\Leftrightarrow \mathcal{B} \subseteq \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q : |\{K \in \mathcal{B} \mid T \leq K\}| = \lambda \quad \forall \ T \in \begin{bmatrix} GF(q)^n \\ t \end{bmatrix}_q$$

History of Designs over Finite Fields

• S. Thomas (1987):

2 - (n, 3, 7; 2)-designs $\forall n \ge 7 \in \mathbb{N}$ with $n \equiv \pm 1 \mod 6$

History of Designs over Finite Fields

- S. Thomas (1987): 2 - (n, 3, 7; 2)-designs ∀ n ≥ 7 ∈ N with n ≡ ±1 mod 6
 H. Suzuki (1992): 2 - (n, 3, q² + q + 1; q)-design ∀ n ≥ 7 with n ≡ ±1 mod 6 and q prime
- M. Miyakawa, A. Munemasa and S. Yoshiara (1995): classification of 2 - (7, 3, λ; q)-designs for q = 2, 3 with small λ
 T. Itoh (1998):
 - $2 (ml, 3, q^3(q^{l-5}/(q-1); q)$ -designs for any $m \ge 3$ which admits the action of $SL(m, q^l)$

History of Designs over Finite Fields

S. Thomas (1987): 2 - (n, 3, 7; 2)-designs ∀ n ≥ 7 ∈ N with n ≡ ±1 mod 6
H. Suzuki (1992): 2 - (n, 3, q² + q + 1; q)-design ∀ n ≥ 7 with n ≡ ±1 mod 6 and q prime
M. Miyakawa, A. Munemasa and S. Yoshiara (1995):

classification of $2 - (7, 3, \lambda; q)$ -designs for q = 2, 3 with small λ • T. Itoh (1998):

$$2 - (ml, 3, q^3(q^{l-5}/(q-1); q)$$
-designs for any $m \ge 3$
which admits the action of $SL(m, q^l)$

• M. Braun (2005):

$$3 - (8, 4, 11, 2)$$
-design

q-Steiner Systems and Network Codes

Definition

A t - (n, k, 1; q)-design is called a q-Steiner system.

A t - (n, k, 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and q-Steiner systems in 2002.

A t - (n, k, 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and *q*-Steiner systems in 2002.

Anyway till this day no q-Steiner system has been found yet!

A t - (n, k, 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and q-Steiner systems in 2002.

Anyway till this day no q-Steiner system has been found yet!

 $\frac{\text{Application of } q\text{-analogs of designs:}}{\Rightarrow \text{NETWORK CODING!}}$

A t - (n, k, 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and q-Steiner systems in 2002.

Anyway till this day no q-Steiner system has been found yet!

 $\frac{\text{Application of } q\text{-analogs of designs:}}{\Rightarrow \text{NETWORK CODING!}}$

 Error-correcting network code = a set of k-subspaces in GF(q)ⁿ such that each t-subspace is in at most 1 k-subspace

A t - (n, k, 1; q)-design is called a q-Steiner system.

Etzion and Schwartz gave necessary conditions for the existence of such structures and presented connections between Steiner systems and q-Steiner systems in 2002.

Anyway till this day no q-Steiner system has been found yet!

 $\frac{\text{Application of } q\text{-analogs of designs:}}{\Rightarrow \text{NETWORK CODING!}}$

- Error-correcting network code = a set of k-subspaces in $GF(q)^n$ such that each t-subspace is in at most 1 k-subspace
- Perfect code = a set of k-subspaces in GF(q)ⁿ such that each t-subspace is in exactly 1 k-subspace

Construction

$$\begin{split} \mathcal{M} &:= \text{incidence matrix between } k\text{-subspaces and } t\text{-subspaces of } GF(q)^n \\ \mathcal{M}_{\mathcal{T},\mathcal{K}} &:= \left\{ \begin{array}{ll} 1 & \text{if } t\text{-subspace } \mathcal{T} \leq k\text{-subspace } \mathcal{K} \\ 0 & \text{else} \end{array} \right. \end{split}$$

Construction

 $\begin{aligned} \mathcal{M} &:= \text{incidence matrix between } k\text{-subspaces and } t\text{-subspaces of } GF(q)^n \\ \mathcal{M}_{T,K} &:= \left\{ \begin{array}{ll} 1 & \text{if } t\text{-subspace } T \leq k\text{-subspace } K \\ 0 & \text{else} \end{array} \right. \end{aligned}$

Solve the diophantine system of equations

$$\mathcal{M} \cdot \vec{x} = \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix}$$

 $\Rightarrow 0/1$ -solution $\vec{x} = t - (n, k, \lambda; q)$ -design

Construction

 $\begin{aligned} \mathcal{M} &:= \text{incidence matrix between } k\text{-subspaces and } t\text{-subspaces of } GF(q)^n \\ \mathcal{M}_{\mathcal{T},\mathcal{K}} &:= \left\{ \begin{array}{ll} 1 & \text{if } t\text{-subspace } \mathcal{T} \leq k\text{-subspace } \mathcal{K} \\ 0 & \text{else} \end{array} \right. \end{aligned}$

Solve the diophantine system of equations

$$\mathcal{M} \cdot \vec{x} = \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix}$$

 $\Rightarrow 0/1$ -solution $\vec{x} = t - (n, k, \lambda; q)$ -design

PROBLEM: Size of \mathcal{M} grows too fast for increasing parameters!

Construction – Kramer-Mesner method

Prescribing a group ${\it G}$ of automorphisms of the design reduces the size of ${\cal M}$

 \Rightarrow shrinked Kramer-Mesner matrix $\mathcal{M}^G :=$ incidence matrix between the *G*-orbits of *k*-subspaces and the *G*-orbits of *t*-subspaces of $GF(q)^n$

Construction – Kramer-Mesner method

Prescribing a group ${\it G}$ of automorphisms of the design reduces the size of ${\cal M}$

 \Rightarrow shrinked Kramer-Mesner matrix $\mathcal{M}^G :=$ incidence matrix between the *G*-orbits of *k*-subspaces and the *G*-orbits of *t*-subspaces of $GF(q)^n$

Solve the new diophantine system of equations

$$\mathcal{M}^{\mathcal{G}} \cdot \vec{x} = \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix}$$

 $\Rightarrow 0/1$ -solution $\vec{x} = t - (n, k, \lambda; q)$ -design

Existing Implementation

Implementation with Double Cosets for the construction of $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$

Transform the problem of constructing $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$ into a double coset problem:

$$G \setminus \left[\frac{GF(q)^n}{k} \right]_q \twoheadrightarrow G \setminus GL(n,q) / GL(n,q)_{\langle e_1, \dots, e_k \rangle}$$

Existing Implementation

Implementation with Double Cosets for the construction of $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$

Transform the problem of constructing $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$ into a double coset problem:

$$G \setminus \left[\frac{GF(q)^n}{k} \right]_q \twoheadrightarrow G \setminus GL(n,q) / GL(n,q)_{\langle e_1, \dots, e_k \rangle}$$

PROBLEM: Works just a for a few selected groups

New Implementation

- Schreier-Sims algorithm for $G \leq GL(n,q)$
- Direct construction of $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$ via the laddergame

• compute a base and strong generating set (BSGS) of $G \leq GL(n,q)$

- compute a base and strong generating set (BSGS) of $G \leq GL(n,q)$
- G operates on the set of standard basis vectors of $GF(q)^n$

- compute a base and strong generating set (BSGS) of $G \leq GL(n,q)$
- G operates on the set of standard basis vectors of $GF(q)^n$
- stabilizer chain of G in terms of the base

$$G = G_1 \geq G_2 \geq \cdots \geq G_n = 1$$

- compute a base and strong generating set (BSGS) of $G \leq GL(n,q)$
- G operates on the set of standard basis vectors of $GF(q)^n$
- stabilizer chain of G in terms of the base

$$G = G_1 \geq G_2 \geq \cdots \geq G_n = 1$$

• transversal chain of G

$$T_1 \geq T_2 \geq \cdots \geq T_n$$
, $T_i \in \mathcal{T}(G_i/G_{i+1})$

- compute a base and strong generating set (BSGS) of $G \leq GL(n,q)$
- G operates on the set of standard basis vectors of $GF(q)^n$
- stabilizer chain of G in terms of the base

$$G = G_1 \geq G_2 \geq \cdots \geq G_n = 1$$

• transversal chain of G

$$T_1 \geq T_2 \geq \cdots \geq T_n$$
, $T_i \in \mathcal{T}(G_i/G_{i+1})$

 $\Rightarrow T_{i_{(i=1,...,n)}}$ as Input for Construction of $G \setminus \begin{bmatrix} GF(q)^n \\ k \end{bmatrix}_q$

Homomorphism Principle

Homomorphism Principle

Homomorphism Principle

$$Y_i := \{y \le GF(q)^n \mid dim(y) = i\}$$

 $X_i := \{(y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$

$$Y_i := \{ y \le GF(q)^n \mid dim(y) = i \}$$

- $X_i := \{(y,t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$
 - Downstep Splitting orbits

$$\varphi_i: X_i \to Y_{i-1}, (y, t) \mapsto y$$

$$Y_i := \{y \le GF(q)^n \mid dim(y) = i\}$$

 $X_i := \{(y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$

• Downstep – Splitting orbits

$$arphi_i: X_i o Y_{i-1}, (y, t) \mapsto y$$
 $G \setminus Y_{i-1}$

$$\begin{split} Y_i &:= \{ y \leq GF(q)^n \mid dim(y) = i \} \\ X_i &:= \{ (y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y \} \end{split}$$

• Downstep – Splitting orbits

$$arphi_i : X_i o Y_{i-1}, (y, t) \mapsto y$$
 $G
angle Y_{i-1} \Rightarrow G
angle X_i$

$$Y_i := \{y \le GF(q)^n \mid dim(y) = i\}$$

 $X_i := \{(y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$

• Downstep – Splitting orbits

$$arphi_i : X_i o Y_{i-1}, (y, t) \mapsto y$$
 $G \setminus Y_{i-1} \Rightarrow G \setminus X_i$

• Upstep – Fusing orbits

$$\delta_i: X_i \to Y_i, (y, t) \mapsto \langle y \cup t \rangle$$

$$Y_i := \{y \le GF(q)^n \mid dim(y) = i\}$$

 $X_i := \{(y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$

• Downstep – Splitting orbits

$$arphi_i : X_i o Y_{i-1}, (y, t) \mapsto y$$
 $G \setminus Y_{i-1} \Rightarrow G \setminus X_i$

• Upstep – Fusing orbits

$$\delta_i: X_i o Y_i, (y, t) \mapsto \langle y \cup t
angle$$
 $G \setminus X_i$

$$Y_i := \{y \le GF(q)^n \mid dim(y) = i\}$$

 $X_i := \{(y, t) \mid y \in Y_{i-1}, t \in Y_1, t \nsubseteq y\}$

• Downstep – Splitting orbits

$$arphi_i : X_i \to Y_{i-1}, (y, t) \mapsto y$$
 $G \setminus Y_{i-1} \Rightarrow G \setminus X_i$

• Upstep – Fusing orbits

$$\delta_i : X_i \to Y_i, (y, t) \mapsto \langle y \cup t \rangle$$
 $G \backslash X_i \Rightarrow G \backslash Y_i$

• $G \setminus Y_1$

New Results

parameters	<i>G</i>	dim $\mathcal{M}_{t,k}^{G}$	λ
$2 - (6, 3, \lambda; 3)$	336	93 imes 234	16
$2 - (8, 4, \lambda; 2)$	1020	15 imes217	35, 56, 70, 105, 126, 161,
			176, 196, 245, 266, 280, 315
$2-(9,3,\lambda;2)$	1533	31 imes 529	21, 22, 42, 43, 63
$2 - (9, 4, \lambda; 2)$	4599	11 imes 725	21, 63, 84, 126, 147, 189, 210,
			252, 273, 315, 336, 378, 399, 462
			504, 525, 567, 588, 651, 693
			714, 756, 777, 840, 882, 903
			945, 966, 1008, 1029, 1071, 1092
			1134, 1155, 1197, 1218, 1281, 1323

Open Problems

- q-Steiner systems ?
- Designs with t > 3 ?

Open Problems

- q-Steiner systems ?
- Designs with t > 3 ?

Thank you very much for your attention!

References

M. Braun, A. Kerber, R. Laue: *Systematic construction of q-analogs of designs*, Designs, Codes and Cryptography, 34(1): 55–70, 2005.

G. Butler: *The Schreier Algorithm for Matrix Groups*, SYMSAC '76, 167–170, 1976

T.Etzion, M. Schwartz: *Codes and Anticodes in the Grassmann Graph*, Journal of Combinatorial Theory, A 97: 27–42, 2002

A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimus Distance*, Lecture Notes in Computer Science, 31–42, 2008

E. S. Kramer, D. M. Mesner: *t-Designs on Hypergraphs*, Discrete Mathematics 15: 263–296, 1976

R. Laue: Construction of Combinatorial Objects – A Tutorial, Bayreuther Mathematische Schriften 43: 53–96, 1993

S. Thomas: Designs over Finite Fields, Geom. Ded. 24: 237-242, 1987