A Hilton-Milner theorem for vector spaces and the chromatic number of *q*-Kneser graphs

Aart B., A.E. Brouwer, A. Chowdhuri, P. Frankl, T. Mussche, B. Patkós, T. Szőnyi

ALCOMA 10, April 17th 2010, Thurnau, Organizers: thank you for this magnificent meeting, Reinhard: Herzliche Glückwünsche zum 65. Geburtstag.

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me) aeb Andries Brouwer, TU-Eindhoven, Netherlands ab Aart Blokhuis, TU-Eindhoven, Netherlands (me) aeb Andries Brouwer, TU-Eindhoven, Netherlands ac Ameerah Chowdhury, Caltech, USA ab Aart Blokhuis, TU-Eindhoven, Netherlands (me) aeb Andries Brouwer, TU-Eindhoven, Netherlands ac Ameerah Chowdhury, Caltech, USA pf Péter Frankl, Japan, France or Hungary ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium
bp Balázs Patkós, ELTE-Budapest, Hungary

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium
bp Balázs Patkós, ELTE-Budapest, Hungary
tsz Tamás Szőnyi, ELTE-Budapest, Hungary

Much more famous as a juggler: pf

∃ >

э

Much more famous as a juggler: pf

Erdős-Ko-Rado, 61: If \mathcal{F} is a *k*-uniform intersecting family of subsets of an *n* element set *S*, then $|\mathcal{F}| \leq {n-1 \choose k-1}$ provided $2k \leq n$.

If $2k + 1 \le n$, then equality holds if and only if \mathcal{F} is the family of all subsets containing a fixed element $s \in S$.

The proof from the book, by G.O.H. Katona: Arrange the points of *S* in a circle, and count how many members of \mathcal{F} occupy a (*k*-)segment in this arrangement. Out of the *n* segments at most *k* belong to \mathcal{F} , and $\frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}$. In case of equality in the Erdős-Ko-Rado theorem there is a point belonging to all sets, in other words, the covering number $\tau(\mathcal{F}) = 1$. What if $\tau \ge 2$?

In case of equality in the Erdős-Ko-Rado theorem there is a point belonging to all sets, in other words, the covering number $\tau(\mathcal{F}) = 1$. What if $\tau \ge 2$?

Theorem (Hilton-Milner, 67)

Let $\mathcal{F} \subset {[n] \choose k}$ be an intersecting family with $2k + 1 \le n$ and $\tau(\mathcal{F}) \ge 2$. Then $|\mathcal{F}| \le {n-1 \choose k-1} - {n-k-1 \choose k-1} + 1$. The families achieving that size are (i) for a k-subset F and $x \notin F$ the family $\{F\} \cup \{G \in {[n] \choose k} : x \in G, F \cap G \neq \emptyset\},$ (ii) if k = 3, then for any 3-subset S the family $\{F \in {[n] \choose 2} : |F \cap S| \ge 2\}.$

• • = • • = •

글 > - < 글 >

э

n-set \longrightarrow *n*-dimensional vector space

n-set \longrightarrow n-dimensional vector space k-subsets \longrightarrow k-dimensional subspaces

n-set \longrightarrow n-dimensional vector space k-subsets \longrightarrow k-dimensional subspaces intersecting \longrightarrow intersecting non-trivially

 $\begin{array}{l} n\text{-set} \longrightarrow n\text{-dimensional vector space} \\ k\text{-subsets} \longrightarrow k\text{-dimensional subspaces} \\ \text{intersecting} \longrightarrow \text{intersecting non-trivially} \\ \binom{n}{k} \longrightarrow \binom{n}{k} \text{ (Gaussian coefficient)} \end{array}$

 $\begin{array}{l} n\text{-set} \longrightarrow n\text{-dimensional vector space} \\ k\text{-subsets} \longrightarrow k\text{-dimensional subspaces} \\ \text{intersecting} \longrightarrow \text{intersecting non-trivially} \\ \binom{n}{k} \longrightarrow \binom{n}{k} \text{ (Gaussian coefficient)} \end{array}$

$$\begin{bmatrix}n\\k\end{bmatrix}_q = \prod_{i=0}^{k-1} rac{q^{n-i}-1}{q^{k-i}-1} pprox q^{k(n-k)}.$$

 $\begin{array}{l} n\text{-set} \longrightarrow n\text{-dimensional vector space} \\ k\text{-subsets} \longrightarrow k\text{-dimensional subspaces} \\ \text{intersecting} \longrightarrow \text{intersecting non-trivially} \\ \binom{n}{k} \longrightarrow \binom{n}{k} \text{ (Gaussian coefficient)} \end{array}$

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1} \approx q^{k(n-k)}.$$

Theorem (Hsieh, q-analogue of Erdős-Ko-Rado, 75)

 $\mathcal{F} \subset \begin{bmatrix} V \\ k \end{bmatrix}$ intersecting, $n \ge 2k + 1$, then $|\mathcal{F}| \le \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$. In case of equality we have a point pencil.

 $\begin{array}{l} n\text{-set} \longrightarrow n\text{-dimensional vector space} \\ k\text{-subsets} \longrightarrow k\text{-dimensional subspaces} \\ \text{intersecting} \longrightarrow \text{intersecting non-trivially} \\ \binom{n}{k} \longrightarrow \binom{n}{k} \text{ (Gaussian coefficient)} \end{array}$

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1} \approx q^{k(n-k)}.$$

Theorem (Hsieh, q-analogue of Erdős-Ko-Rado, 75)

 $\mathcal{F} \subset \begin{bmatrix} V \\ k \end{bmatrix}$ intersecting, $n \ge 2k + 1$, then $|\mathcal{F}| \le \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$. In case of equality we have a point pencil.

Greene-Kleitman (78) did the case n = 2k (not only point-pencils but also their duals!)

A challange!

Find a *q*-analogue of Katona's circle proof for Erdős-Ko-Rado, maybe using Singer-cycles, in any case using families of $q^n - 1$ *k*-spaces, with only $q^k - 1$ belonging to the family.

Gyula Katona (and Rudi Ahlswede)

ab, aeb, ac, pf, tm, bp, tsz The chromatic number of *q*-Kneser graphs

Theorem (Frankl-Wilson, 86)

 \mathcal{F} a t-intersecting family of k-subspaces of an n-space, then: $|\mathcal{F}| \leq {n-t \brack k-t}$ if $2k \leq n$, and $|\mathcal{F}| \leq {2k-t \brack k}$ if $2k - t \leq n \leq 2k$.

Theorem (Frankl-Wilson, 86)

 \mathcal{F} a t-intersecting family of k-subspaces of an n-space, then: $|\mathcal{F}| \leq {n-t \brack k-t}$ if $2k \leq n$, and $|\mathcal{F}| \leq {2k-t \brack k}$ if $2k - t \leq n \leq 2k$.

A collection of k-spaces \mathcal{F} is a Hilton-Milner family if

$$\mathcal{F} = \{U\} \cup \left\{W \in \begin{bmatrix} V\\ k \end{bmatrix} : E \leqslant W, \dim(W \cap U) \ge 1 \right\} \cup \begin{bmatrix} E \lor U\\ k \end{bmatrix},$$

for some fixed $E \in {V \brack 1}, U \in {V \brack k}$ with $E \nleq U$.

The size of a H-M family is

 ${n-1 \brack k-1} - q^{k(k-1)} {n-k-1 \brack k-1} + q^k \quad (< {k \brack 1} {n-2 \brack k-2}).$

Theorem (*q*-analogue of Hilton-Milner)

Let V be an n-dimensional vector space over GF(q), $q \ge 3$ and $n \ge 2k + 1$. Then for any intersecting family $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ with $\tau(\mathcal{F}) \ge 2$ we have $|\mathcal{F}| \le \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} - q^{k(k-1)} \begin{bmatrix} n-k-1 \\ k-1 \end{bmatrix} + q^k$. If \mathcal{F} is of this size, then either \mathcal{F} is a H-M family, or k = 3 and $\mathcal{F} = \{F \in \begin{bmatrix} V \\ k \end{bmatrix} : \dim(S \cap F) \ge 2\}$ for some 3-space S of V. Furthermore if $k \ge 4$, then there exists an ε (independent of n, q, k) such that if $|\mathcal{F}| \ge (1 - \varepsilon) \left(\begin{bmatrix} n-1 \\ k-1 \end{bmatrix} - q^{k(k-1)} \begin{bmatrix} n-k-1 \\ k-1 \end{bmatrix} + q^k \right)$, then \mathcal{F} is a subfamily of a H-M family.

Step 0: The case k = 2: Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: H-M.

Step 0: The case k = 2: Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: H-M.

Key concept: a hitting subspace: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$: dimension of smallest hitting subspace. A H-M familie has $\tau = 2$. ($\tau = 1$ iff point-pencil E-K-R) $\tau = 2$: hitting lines (2-spaces), \mathcal{T} : set of hitting lines (\mathcal{F} is maximal $\rightarrow \mathcal{T}$ intersecting)

Step 0: The case k = 2: Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: H-M.

Key concept: a hitting subspace: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$: dimension of smallest hitting subspace. A H-M familie has $\tau = 2$. ($\tau = 1$ iff point-pencil E-K-R) $\tau = 2$: hitting lines (2-spaces), \mathcal{T} : set of hitting lines (\mathcal{F} is maximal $\rightarrow \mathcal{T}$ intersecting) Step 1: $\tau = 2$, structure of \mathcal{T} (see Step 0): either $\begin{bmatrix} V\\2 \end{bmatrix}$, where dim V = 3, or lines through a point (1-space) Pin an (l + 1)-space.

Step 0: The case k = 2: Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: H-M.

Key concept: a *hitting subspace*: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$: dimension of smallest hitting subspace. A H-M familie has $\tau = 2$. $(\tau = 1 \text{ iff point-pencil } E-K-R)$ $\tau = 2$: hitting lines (2-spaces), \mathcal{T} : set of hitting lines (\mathcal{F} is maximal $\rightarrow \mathcal{T}$ intersecting) Step 1: $\tau = 2$, structure of \mathcal{T} (see Step 0): either $\begin{bmatrix} V \\ 2 \end{bmatrix}$, where dim V = 3, or lines through a point (1-space) P in an (l+1)-space. Step 2: Essential part of \mathcal{F} is the k-spaces containing an element of \mathcal{T} .

Proposition (Description of \mathcal{T} -s if $\tau(\mathcal{F}) = 2$:)

Let \mathcal{F} be a maximal intersecting family with $\tau(\mathcal{F}) = 2$. Then (i) $|\mathcal{T}| = 1$ (ii) $|\mathcal{T}| > 1$, $\tau(\mathcal{T}) = 1$, and there is a 2-subspace L and a 1-subspace $E \leq L$ so that $\mathcal{T} = \{\ell : \ell = E \lor W, \dim W = 1, W \leq L\}.$ (iii) $|\mathcal{T}| > 1$, $\tau(\mathcal{T}) = 1$, and there is an $l(\geq 3)$ -subspace L and a 1-subspace $E \leq L$ so that $\mathcal{T} = \{\ell : \ell = E \lor W, \dim W = 1, W \leq L\}.$ (iv) $\tau(\mathcal{T}) = 2, \ \mathcal{T} = \begin{bmatrix} A \\ 2 \end{bmatrix}$ for some 3-space A and $\mathcal{F} = \{ U : U \cap A \text{ has dimension } 2 \}$ and $|\mathcal{F}| = (q^2 + q + 1)({\binom{n-2}{k-2}} - 1) + {\binom{n-3}{k-3}}.$ In case (ii) and (iii) there is a 1-subspace E and an I-subspace L such that \mathcal{F} contains the set \mathcal{F}_{FI} of all k-spaces containing E and intersecting L.

イロト イポト イヨト イヨト

э

Proposition (Bounds for \mathcal{F} in the previous prop.)

The last two terms of the upper bound for the size \mathcal{F} given in (ii) and (iii) give an upper bound on $|\mathcal{F} \setminus \mathcal{F}_{E,L}|$.

글 > - < 글 >

Rough sketch of the proof (continued): Step 3: Guarantee $\tau = 2$:

Proposition

Suppose that $k \ge 3$, $n \ge 2k + 1$, and for q = 2 we have $n \ge 2k + 2$. Let $|\mathcal{F}| \ge {n-2 \brack k-2} f(q)$. For $l \ge 3$ we have the following: whenever an *l*-subspace is meeting every $F \in \mathcal{F}$ then there is an (l-1)-subspace meeting \mathcal{F} if and only if

$$\frac{q^{n-2k}(l-2)(q-1)^l f(q)}{(q^l-1)(q^k-1)} > 1. \tag{1}$$

Corollary

If $|\mathcal{F}| \geq {\binom{n-2}{k-2}} \frac{q^2+q+1}{(q-1)^2} q^{3k-n}$, then $\tau(\mathcal{F}) = 2$, that is \mathcal{F} is contained in one of the systems described earlier.

For $n \ge 3k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces) For $n \ge 3k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces) For n = 2k + 1 the above bound is worse than the H-M-bound For $n \ge 3k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces) For n = 2k + 1 the above bound is worse than the H-M-bound Step 4: A proof for k = 3 (and essentially n = 2k + 1 = 7). For $n \ge 3k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces) For n = 2k + 1 the above bound is worse than the H-M-bound Step 4: A proof for k = 3 (and essentially n = 2k + 1 = 7). Step 5: $k \ge 4$, n = 2k + 1, existence of hitting 3-spaces.

Corollary

If $|\mathcal{F}| \geq {k \brack 1} {n-2 \brack k-2} (1-\frac{1}{q^3-q})$, then $\tau(\mathcal{F}) \leq 2$ if $n \geq 2k+2$ and $q \geq 3$, and $\tau(\mathcal{F}) \leq 3$ if n = 2k+1 and $q \geq 4$.

For $n \ge 3k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces) For n = 2k + 1 the above bound is worse than the H-M-bound Step 4: A proof for k = 3 (and essentially n = 2k + 1 = 7). Step 5: $k \ge 4$, n = 2k + 1, existence of hitting 3-spaces.

Corollary

If $|\mathcal{F}| \geq {k \brack 1} {n-2 \brack k-2} (1-\frac{1}{q^3-q})$, then $\tau(\mathcal{F}) \leq 2$ if $n \geq 2k+2$ and $q \geq 3$, and $\tau(\mathcal{F}) \leq 3$ if n = 2k+1 and $q \geq 4$.

Step 6: $k \ge 4$, n = 2k + 1, $q \ge 4$ existence of hitting 3-spaces implies $\tau(\mathcal{F}) \le 2$.

Idea: Averaging

$$\exists E, \dim E = 1 \text{ for which } |\mathcal{F}_{E}| \geq |\mathcal{F}| / {k \choose 1}$$
If $\tau(\mathcal{F}) = \ell$, then $\exists E : |\mathcal{F}_{E}| \geq |\mathcal{F}| / {\ell \choose 1}$
 $\tau(\mathcal{F}) > 1 \rightarrow \exists L \geq E$, dim $L = 2$ for which
 $|\mathcal{F}_{L}| \geq |\mathcal{F}_{E}| / {k \choose 1} \geq |\mathcal{F}| / {\ell \choose 1} {k \choose 1}$
 $\tau(\mathcal{F}) > 2 \rightarrow \exists W \geq L$, dim $W = 3$ for which
 $|\mathcal{F}_{W}| \geq |\mathcal{F}_{L}| / {k \choose 1} \geq |\mathcal{F}| / {\ell \choose 1} {k \choose 1}^{2}$

and so on...

Contradiction if the bound is larger than $\binom{n-s}{k-s}$, or, in other words we found a hitting (s-1)-subspace.

For example,

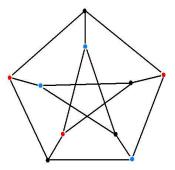
If $A \notin \mathcal{T}$, dim A = 2, then $|\mathcal{F}_A| \leq {k \choose 1} {n-3 \choose k-3}$.

Chromatic number of Kneser graphs

The vertex set of the Kneser graph $K_{n:k}$ is $\binom{V}{k}$, |V| = n. Two vertices (*k*-subsets) of $K_{n:k}$ are adjacent if they are disjoint. $K_{5:2}$ is the Petersen-graph:

Chromatic number of Kneser graphs

The vertex set of the Kneser graph $K_{n:k}$ is $\binom{V}{k}$, |V| = n. Two vertices (*k*-subsets) of $K_{n:k}$ are adjacent if they are disjoint. $K_{5:2}$ is the Petersen-graph:



Lovász 78: For n = 2k + r the chromatic number of $K_{n:k}$ is r + 2. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04. For k = 2, 3 it can be proved using the Hilton-Milner theorem!

Lovász' theorem

Lovász 78: For n = 2k + r the chromatic number of $K_{n:k}$ is r + 2. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04.

For k = 2, 3 it can be proved using the Hilton-Milner theorem!

Lovász' theorem

Lovász 78: For n = 2k + r the chromatic number of $K_{n:k}$ is r + 2. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04. For k = 2, 3 it can be proved using the Hilton-Milner theorem!

The vertex set of the *q*-Kneser graph $qK_{n:k}$ is $\begin{bmatrix} V \\ k \end{bmatrix}$, dim V = n. Two vertices (*k*-subspaces) of $qK_{n:k}$ are adjacent if they are disjoint. The vertex set of the *q*-Kneser graph $qK_{n:k}$ is $\begin{bmatrix} V \\ k \end{bmatrix}$, dim V = n. Two vertices (*k*-subspaces) of $qK_{n:k}$ are adjacent if they are disjoint.

Theorem (*q*-analogue of Lovász' theorem)

If $n \ge 2k + 1$ and $q \ge 3$, then the chromatic number $\chi(qK_{n:k})$ equals $\binom{n-k+1}{1}$. Moreover, each colour class of a minimum colouring is a point-pencil and the points are (one-spaces) in an (n - k + 1)-dimensional subspace.

The vertex set of the *q*-Kneser graph $qK_{n:k}$ is $\begin{bmatrix} V \\ k \end{bmatrix}$, dim V = n. Two vertices (*k*-subspaces) of $qK_{n:k}$ are adjacent if they are disjoint.

Theorem (*q*-analogue of Lovász' theorem)

If $n \ge 2k + 1$ and $q \ge 3$, then the chromatic number $\chi(qK_{n:k})$ equals $\binom{n-k+1}{1}$. Moreover, each colour class of a minimum colouring is a point-pencil and the points are (one-spaces) in an (n - k + 1)-dimensional subspace.

k = 2: Ameerah Chowdhury, Chris Godsil, Gordon Royle $q > q_k$: Tim Mussche

Theorem (Bose-Burton, 66)

If $\dim(V) = n$ and \mathcal{E} is a family of 1-spaces in V such that any k-space in V contains an element of \mathcal{E} , then $|\mathcal{E}| \ge {n-k+1 \choose 1}$. Equality iff $\mathcal{E} = {H \choose 1}$ for some (n - k + 1)-space H in V.

In maybe more familiar terms: \mathcal{E} is a (trivial) blocking set for (k-1)-spaces in PG(n-1,q).

Proposition (Useful extension)

If $\dim(V) = n$ and \mathcal{E} is a family of $\binom{n-k+1}{1} - \varepsilon$ one-spaces in V, then the number of k-spaces in V disjoint from all $E \in \mathcal{E}$ is at least $\varepsilon q^{(k-1)(n-k+1)} / \binom{k}{1}$.

Proof of the extension

(Projective formulation: In PG(n-1,q) we have \mathcal{E} , a set of $\binom{n-k+1}{1} - \varepsilon$ points. To show: there are at least $\varepsilon q^{(k-1)(n-k+1)} / \binom{k}{1}$ disjoint k(-1)-spaces).

Induction on k. For k = 1 there is nothing to prove. Next, let k > 1 and count incident pairs (1-space, k-space), where the k-space is disjoint from all $E \in \mathcal{E}$:

$$\begin{split} N \begin{bmatrix} k \\ 1 \end{bmatrix} \geq \left(\begin{bmatrix} n \\ 1 \end{bmatrix} - \begin{bmatrix} n-k+1 \\ 1 \end{bmatrix} + \varepsilon \right) \varepsilon q^{(k-2)(n-k+1)} / \begin{bmatrix} k-1 \\ 1 \end{bmatrix} \geq \\ \geq \varepsilon q^{(k-1)(n-k+1)}. \end{split}$$

Of course the true value is $\varepsilon q^{(k-1)(n-k)}$, a non-trivial result due to Klaus Metsch using as a main ingredient an algebraic lemma from Zsuzsa Weiner and Tamás Szőnyi.

Let G(ood) be the set of centres of point-pencils used in a minimal colouring, B(ad) the other colours. If |B| = 0 then from Bose-Burton we know that |G| is at least $\begin{bmatrix} n-k+1 \\ 1 \end{bmatrix}$ and we know everything.

If $|G| = {n-k+1 \choose 1} - \varepsilon$ then by our extension we find at least $\varepsilon q^{(k-1)(n-k+1)}/{k \choose 1}$ uncoloured k-spaces. Since a bad colour can only be used the size of a H-M family time, and

$${n-1\brack k-1} - q^{k(k-1)}{n-k-1\brack k-1} + q^k < q^{(k-1)(n-k+1)}/{k\brack 1}$$

for $q \geq 3$, we have a contradiction.

The most interesting, but alas also the most difficult case, $qK_{2k:k}$.

Largest cocliques: point pencils and their duals (Godsil, Newman).

Second largest? Conjecture: Hilton-Milner families, and their duals. Chromatic number $\chi(qK_{2k:k})$? Conjecture: $q^k + q^{k-1}$. (k = 2 easy, k = 3 Eisfeld-Storme-Sziklai)

Colouring with $q^k + q^{k-1}$ colours:

- points of $\Pi_{k+1} \setminus \Pi_k$
- hyperplanes through Π_k that do not contain Π_{k+1}

PROOF for $q > q_k$. As $q > q_k$, ${n \choose k} \approx q^{(n-k)k}$. Point-pencils: $\approx q^{k(k-1)}$.

Theorem

Let \mathcal{F} be a maximal coclique in $qK_{2k:k}$ with $\tau(\mathcal{F}) > 1$. Then $\mathcal{F}| \leq cq^{k^2-k-1}$, where c > 1.

Sketch of the proof (for k = 3): $|HM| = q(q^2 + q + 1)^2 + 1$. If $|\mathcal{F}| > (q+1)(q^2 + q + 1)^2 \implies \exists L$ s.t. there are more than q+1 elements of \mathcal{F} through L; they generate a 5-space \implies there are at most q^4 planes not meeting the greedy line L. Leaving out the elements of \mathcal{F} not meeting L we get a system \mathcal{F}^* with $\tau = 2$. Now $|\mathcal{F}^*| \leq (q+1)(q^2 + q + 1)(q^2 + q) + (q^3 + q^2 + q + 1)$. So we get by putting together everything that

 $|\mathcal{F}| \leq (q+1)(q^2+q+1)^2+q^4(-q^3-q^2-q),$

if \mathcal{F} is not contained in a point-pencil or its dual.

The chromatic number of q-Kneser graphs for n = 2k, III.

Trivial bound:
$$\chi \ge {\binom{2k}{k}}/{\binom{2k-1}{k-1}} = q^k + 1.$$

Proposition

If in the colouring only point and hyperplane colours are used then we need at least $q^k + q^{k-1}$ colours.

Now suppose we have $q^k + q^{k-1} - \varepsilon$ point/hyperplane colours (out of $q^k - q^{k-1}$ or less).

Remark

If the second largest coclique has size at most $cq^{k^2-k-1} \leq {\binom{2k-1}{k-1}}/2$, then $\varepsilon \leq 2q^{k-1}$.

A bipartite graph

Define a bipartite graph in the following way: Upper points N: k-spaces **not** coloured by the $q^k + q^{k-1} - \varepsilon$ point/hyperplane colours. $|N| \leq \varepsilon c q^{k^2 - k - 1}$.

Lower points U: k-spaces that are **uniquely** coloured

Edge: intersect in a (k-1)-dim. subspace

Lemma

$$|U| \ge 2\left(iggl[2k \\ k \end{bmatrix} - |N|
ight) - (q^k + q^{k-1} - \varepsilon) iggl[2k - 1 \\ k - 1 \end{bmatrix}$$

Since $\varepsilon \leq 2q^{k-1}$ and $|N| \leq \varepsilon cq^{k^2-k-1}$, we get that $|U| \approx {\binom{2k}{k}}$.

Lemma

The degree of a point in U is at least εq^{k-1} .

Lemma

The degree of a point of N is at most $\binom{k}{1} \binom{k+1}{1} - 1 \approx q^{2k-1}$.

FINAL CONTRADICTION $(q^{k^2} - 2q^{k^2-1})\varepsilon q^{k-1} \le \text{no. of edges} \le \varepsilon cq^{k^2-k-1}q. \Longrightarrow \varepsilon = 0.$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

1) (degrees in *U*) Let *P* denote the point-colours, *H* the hyperplane-colours. Let $\pi \in U$ coloured by $p_0 \in \pi$. Then

$$(|P|-1)q^{k-1}+|H|q^{k-1}+q^{k-1}{k-1\brack 1}\geq q^{k-1}{k+1\brack 1}-1).$$

LHS counts (upper bounds) no. of k-spaces coloured by $P \setminus \{p_0\}$ or H, RHS counts total no. of k-spaces not through p_0 meeting π in a (k-1)-space. \Longrightarrow degree of π is at least εq^{k-1}

2) (degrees in N) Let $\pi \in N$. Choose a (k-1)-space inside, and a (not coloured) k-space containing it: $(\leq) {k \choose k-1} \cdot {2k-k+1 \choose k-k+1}$.

THANK YOU FOR YOUR ATTENTION

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶