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What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some
non-authors (&b, jat, tp, msz):
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One more author

Much more famous as a juggler: pf
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A classical result in extremal combinatorics

Erdés-Ko-Rado, 61: If F is a k-uniform intersecting family of
subsets of an n element set S, then |F| < (Zj) provided 2k < n.

If 2k +1 < n, then equality holds if and only if F is the family of
all subsets containing a fixed element s € S.

The proof from the book, by G.O.H. Katona:

Arrange the points of S in a circle, and count how many members
of F occupy a (k-)segment in this arrangement. Out of the n
segments at most k belong to 7, and £(}) = (Zj)
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A corresponding stability result

In case of equality in the Erdés-Ko-Rado theorem there is a point

belonging to all sets, in other words, the covering number
7(F) = 1. What if 7 > 27
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A corresponding stability result

In case of equality in the Erdés-Ko-Rado theorem there is a point
belonging to all sets, in other words, the covering number
7(F) = 1. What if 7 > 27

Theorem (Hilton-Milner, 67)

Let F C ([ ]) be an intersecting family with 2k + 1 < n and
7(F) > 2. Then |F| < (721) — (".51") + 1. The families
achieving that size are
(i) for a k-subset F and x ¢ F the family
(Flu{Ge () :xe G FNnG#0},
(ii) if k =3, then for any 3-subset S the family
{FG( ) |FNS|>2}.
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The g-analogue of the Erdés-Ko-Rado theorem
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The g-analogue of the Erdés-Ko-Rado theorem

n-set — n-dimensional vector space
k-subsets — k-dimensional subspaces
intersecting — intersecting non-trivially
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The g-analogue of the Erdés-Ko-Rado theorem

n-set — n-dimensional vector space
k-subsets — k-dimensional subspaces
intersecting — intersecting non-trivially
(1) — [}] (Gaussian coefficient)

ab, aeb, ac, pf, tm, bp, tsz The chromatic number of g-Kneser graphs



The g-analogue of the Erdés-Ko-Rado theorem

n-set — n-dimensional vector space
k-subsets — k-dimensional subspaces
intersecting — intersecting non-trivially
(1) — [}] (Gaussian coefficient)

k—1 i
”] H " =1 K-k
= ﬁ ~ q .
[k g =09 -1
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The g-analogue of the Erdés-Ko-Rado theorem

n-set — n-dimensional vector space
k-subsets — k-dimensional subspaces
intersecting — intersecting non-trivially

(1) — [}] (Gaussian coefficient)

Theorem (Hsieh, g-analogue of Erdds-Ko-Rado, 75)

FC [\Z] intersecting, n > 2k + 1, then |F| < [Z:ﬂ In case of
equality we have a point pencil.
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The g-analogue of the Erdés-Ko-Rado theorem

n-set — n-dimensional vector space
k-subsets — k-dimensional subspaces
intersecting — intersecting non-trivially
(1) — [}] (Gaussian coefficient)

W =R

Theorem (Hsieh, g-analogue of Erdds-Ko-Rado, 75)

FC [\Z] intersecting, n > 2k + 1, then |F| < [Z:ﬂ In case of
equality we have a point pencil.

Greene-Kleitman (78) did the case n = 2k (not only point-pencils
but also their duals!)
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A challange!

Find a g-analogue of Katona's circle proof for Erdés-Ko-Rado,
maybe using Singer-cycles, in any case using families of g" — 1
k-spaces, with only g¥ — 1 belonging to the family.

Gyula Katona (and Rudi Ahlswede)
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Strongly intersecting families

Theorem (Frankl-Wilson, 86)

F a t-intersecting family of k-subspaces of an n-space, then:
IFI< [k if 2k<n,

and

|F| < [PXf] if 2k —t < n <2k
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Strongly intersecting families

Theorem (Frankl-Wilson, 86)

F a t-intersecting family of k-subspaces of an n-space, then:
IFI< [k if 2k<n,

and

\F| < [PX"] if 2k —t < n<2k

]
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Hilton-Milner families

A collection of k-spaces F is a Hilton-Milner family if

]-":{U}U{We [\Z] tE < W,dim(WﬂU)Zl}U {EXU],

for some fixed E € [Y], U € [}] with E £ U.
The size of a H-M family is
(o] = DMET +d (< [R2D-
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Theorem (g-analogue of Hilton-Milner)

Let V' be an n-dimensional vector space over GF(q), g > 3 and
n > 2k + 1. Then for any intersecting family F C [\Z] with

7(F) > 2 we have | F| < [Z:ﬂ — gtt=1) [nlle] +q~.

If F is of this size, then either F is a H-M family, or k = 3 and
F={Fe [\k/] :dim(S N F) > 2} for some 3-space S of V.

Furthermore if k > 4, then there exists an € (independent of

n, q, k) such that if |F| > (1 —¢) ([Z:ﬂ ~ s [”;5{1] + qk),

then F is a subfamily of a H-M family.
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Rough sketch of the proof:

Step 0: The case k = 2: Projectively we have an intersecting
collection of lines. Now either they all pass through a point: E-K-R
or they are in a plane: H-M.
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Rough sketch of the proof:

Step 0: The case k = 2: Projectively we have an intersecting
collection of lines. Now either they all pass through a point: E-K-R
or they are in a plane: H-M.

Key concept: a hitting subspace: meets all F € F.
7(F): dimension of smallest hitting subspace.

A H-M familie has 7 = 2.

(7 = 1 iff point-pencil E-K-R)

7 = 2: hitting lines (2-spaces),

T set of hitting lines (F is maximal — 7 intersecting)
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Rough sketch of the proof:

Step 0: The case k = 2: Projectively we have an intersecting
collection of lines. Now either they all pass through a point: E-K-R
or they are in a plane: H-M.

Key concept: a hitting subspace: meets all F € F.

7(F): dimension of smallest hitting subspace.

A H-M familie has 7 = 2.

(7 = 1 iff point-pencil E-K-R)

7 = 2: hitting lines (2-spaces),

T set of hitting lines (F is maximal — 7 intersecting)

Step 1: 7 = 2, structure of 7 (see Step 0):

either [\2/] where dim V = 3, or lines through a point (1-space) P
in an (/ + 1)-space.
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Rough sketch of the proof:

Step 0: The case k = 2: Projectively we have an intersecting
collection of lines. Now either they all pass through a point: E-K-R
or they are in a plane: H-M.

Key concept: a hitting subspace: meets all F € F.

7(F): dimension of smallest hitting subspace.

A H-M familie has 7 = 2.

(7 = 1 iff point-pencil E-K-R)

7 = 2: hitting lines (2-spaces),

T set of hitting lines (F is maximal — 7 intersecting)

Step 1: 7 = 2, structure of 7 (see Step 0):

either [\2/] where dim V = 3, or lines through a point (1-space) P
in an (/ + 1)-space.

Step 2: Essential part of F is the k-spaces containing an element
of 7.
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Proposition (Description of 7-s if 7(F)

Let F be a maximal intersecting family with T7(F) = 2. Then
(i) 17T]=1

(i) |7] > 1, 7(7) = 1, and there is a 2-subspace L and a
1-subspace E £ L so that
T={t:0=EVW,dmW=1W< L}

(iii) |7| > 1, 7(7) = 1, and there is an I(> 3)-subspace L and a
1-subspace E £ L so that
T={(:0=EVW,dmW=1W< L}

(iv) 7(T) =2, T = [4] for some 3-space A and
F ={U: UnN A has dimension 2} and
Fl=(*+a+ (i3] -1+ [53].

In case (ii) and (iii) there is a 1-subspace E and an |-subspace L

such that F contains the set Fg of all k-spaces containing E and

intersecting L.
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Proposition (Bounds for F in the previous prop.)

() 73 < 1A < [ + a+ ) ([ - 1) [ 3):
(i) (a+ D[] —ali3] S 1F1 <
(a+ D[] - ali=s] + (DD -
(i) L] i)~ gl (i3] < 171 <
L =] + (D] = GDG=s] + o' [k
(V) 17 = (¢ +a+D([3] - 1+ [i53].
The last two terms of the upper bound for the size F given in (ii)
and (iii) give an upper bound on |F \ Fg |.

EDIS) + a1 )
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Rough sketch of the proof (continued):
Step 3: Guarantee 7 = 2:

Proposition

Suppose that k > 3, n > 2k + 1, and for g = 2 we have
n>2k+2. Let |F| > [Z:g] f(q). For | > 3 we have the following:
whenever an |-subspace is meeting every F € F then there is an

(I — 1)-subspace meeting F if and only if

q" (1 = 2)(q — 1)'f(q)
(¢' = 1)(q* - 1)

> 1. (1)

| \

Corollary

If|F| > [Z:g] %qy‘_”, then 7(F) = 2, that is F is contained
in one of the systems described earlier.

v
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For n > 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)
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For n > 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)
For n = 2k + 1 the above bound is worse than the H-M-bound
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For n > 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)

For n = 2k + 1 the above bound is worse than the H-M-bound
Step 4: A proof for k = 3 (and essentially n =2k +1=17).
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For n > 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)

For n = 2k + 1 the above bound is worse than the H-M-bound
Step 4: A proof for k = 3 (and essentially n =2k +1=17).
Step 5: k > 4, n =2k + 1, existence of hitting 3-spaces.

IfF|F| > [§] [;3)(1 — ), then 7(F) <2 if n > 2k +2 and
g>3,and 7(F)<3ifn=2k+1and q> 4.
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For n > 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)

For n = 2k + 1 the above bound is worse than the H-M-bound
Step 4: A proof for k = 3 (and essentially n =2k +1=17).
Step 5: k > 4, n =2k + 1, existence of hitting 3-spaces.

IfF|F| > [§] [;3)(1 — ), then 7(F) <2 if n > 2k +2 and
g>3,and 7(F)<3ifn=2k+1and q> 4.

Step 6: k >4, n =2k + 1, g > 4 existence of hitting 3-spaces
implies 7(F) < 2.
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Idea: Averaging

3E, dim E = 1 for which |Fg| > |F|/[4]

If 7(F) = ¢, then 3E : |Fg| > |F|/[4]

7(F) >1— 3L > E, dim L = 2 for which
171 > Fel/[5] > 171/ [1] 1]

7(F)>2— 3IW > L, dim W = 3 for which
Fwl = |Ful/ 8] = 171/ B

and so on...

Contradiction if the bound is larger than [} 3], or, in other words
we found a hitting (s — 1)-subspace.

For example,

If A¢ T, dimA=2, then |Fa| < [X][]73].
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Chromatic number of Kneser graphs

The vertex set of the Kneser graph K,.x is (\l:) V| =n. Two
vertices (k-subsets) of K,.x are adjacent if they are disjoint.

Ks.o is the Petersen-graph:
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Lovasz' theorem

Lovédsz 78: For n = 2k + r the chromatic number of K., is r + 2.

The proof uses topological methods. A simpler proof was given by
Bérdny 78, a prize-winning proof by Joshua Greene 02 and recently
an elementary (that is: not topological) proof by Matousek 04.

For k = 2,3 it can be proved using the Hilton-Milner theorem!
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Chromatic number of the g-analogue of the Kneser graph

The vertex set of the g-Kneser graph gK,,.x is [\;] dimV = n.
Two vertices (k-subspaces) of gK,.x are adjacent if they are
disjoint.
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Chromatic number of the g-analogue of the Kneser graph

The vertex set of the g-Kneser graph gK,,.x is [\;] dimV = n.
Two vertices (k-subspaces) of gK,.x are adjacent if they are
disjoint.

Theorem (g-analogue of Lovasz' theorem)

If n>2k+1 and q > 3, then the chromatic number x(qK.x)
equals ["_IIH]. Moreover, each colour class of a minimum
colouring is a point-pencil and the points are (one-spaces) in an
(n — k + 1)-dimensional subspace.
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Chromatic number of the g-analogue of the Kneser graph

The vertex set of the g-Kneser graph gK,,.x is [\;] dimV = n.
Two vertices (k-subspaces) of gK,.x are adjacent if they are
disjoint.

Theorem (g-analogue of Lovasz' theorem)

If n>2k+1 and q > 3, then the chromatic number x(qK.x)
equals ["_IIH]. Moreover, each colour class of a minimum
colouring is a point-pencil and the points are (one-spaces) in an
(n — k + 1)-dimensional subspace.

k = 2. Ameerah Chowdhury, Chris Godsil, Gordon Royle
g > qk: Tim Mussche
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Bose-Burton plus a useful extension

Theorem (Bose-Burton, 66)

If dim(V) = n and & is a family of 1-spaces in V' such that any
k-space in V' contains an element of £, then |E| > ["_’1(4“1].

Equality iff € = ['ﬂ for some (n — k + 1)-space H in V.

In maybe more familiar terms: £ is a (trivial) blocking set for
(k — 1)-spaces in PG(n — 1, q).

Proposition (Useful extension)

If dim(V) = n and & is a family of [”711‘“] — € one-spaces in V,
then the number of k-spaces in V disjoint from all E € £ is at
least eqk—1(n—k+1) /[K],
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Proof of the extension

(Projective formulation: In PG(n — 1, q) we have &, a set of
[”‘f“} — ¢ points. To show: there are at least zsq(kfl)(”*kﬂ)/m
disjoint k(—1)-spaces).

Induction on k. For k = 1 there is nothing to prove. Next, let
k > 1 and count incident pairs (1-space, k-space), where the
k-space is disjoint from all E € &:

] (-1

> cqlkD(n—k+1),

Of course the true value is eqk~D("=K) 3 non-trivial result due to

Klaus Metsch using as a main ingredient an algebraic lemma from
Zsuzsa Weiner and Tamds Szdnyi.
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The chromatic number of g-Kneser

Let G(ood) be the set of centres of point-pencils used in a minimal
colouring, B(ad) the other colours.
If |B| = 0 then from Bose-Burton we know that |G| is at least

["4{“] and we know everything.

If |G| = ["%*!] — ¢ then by our extension we find at least

aq(k_l)(”_“l)/m uncoloured k-spaces. Since a bad colour can
only be used the size of a H-M family time, and

n—11 k-1 n—k—1 k (k—=1)(n—k+1) k
{k—l} 9 k-1 | To <4 an

for g > 3, we have a contradiction.
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The chromatic number of g-Kneser Il. n = 2k

The most interesting, but alas also the most difficult case, gKok.k.
Largest cocliques: point pencils and their duals (Godsil, Newman).

Second largest? Conjecture: Hilton-Milner families, and their duals.
Chromatic number y(gKox.x)? Conjecture: gk 4 g<—1.

(k = 2 easy, k = 3 Eisfeld-Storme-Sziklai)

Colouring with g% + g*~ colours:

e points of Mgyq \ Mg
e hyperplanes through [y that do not contain Mgy
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A weak H-M bound for n = 2k

PROOF for g > qx.

As g > g, [[] = g(n—kk,

Point-pencils: ~ gk(k—1).

Let F be a maximal coclique in Kok with 7(F) > 1. Then
F| < cgFk1, where ¢ > 1.
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Proof for k =3

Sketch of the proof (for k = 3): |HM|=q(q*> +q+ 1)+ 1. If
|F| > (q+1)(g°> + g+ 1)> = 3L s.t. there are more than q + 1
elements of F through L; they generate a 5-space = there are at
most g* planes not meeting the greedy line L.

Leaving out the elements of F not meeting L we get a system F*

with 7 = 2. Now

[F* < (q+1)(¢° +q+1)(¢° +q) +(a> +¢* + g +1).

So we get by putting together everything that

\FI<(@+1)(*+qg+1)°+q*(—9> — ¢* —q).

if F is not contained in a point-pencil or its dual.
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The chromatic number of g-Kneser graphs for n = 2k,

Trivial bound: x > [*]/[3%7}] = ¢* + 1.

Proposition

If in the colouring only point and hyperplane colours are used then
we need at least gk + g*~1 colours.

k=1 _ ¢ point/hyperplane colours (out

Now suppose we have gk + g
of gk — =1 or less).

If the second Iargest coclique has size at most
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A bipartite graph

Define a bipartite graph in the following way:

Upper points N: k-spaces not coloured by the g¥ + g
point/hyperplane colours.

IN| < ecgk*—+—1,

Lower points U: k-spaces that are uniquely coloured

k=1 _ .

Edge: intersect in a (k — 1)-dim. subspace

s 2 (ﬁ(k] B |N‘) (g + g =) {2:_—11}

Since £ < 2¢¥~! and |N| < ecqk" k=1 we get that |U| ~ [2kk].
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Point degrees, final contradiction

The degree of a point in U is at least eqk—1.

The degree of a point of N is at most [’1(] ( [lerl] —1)(= q2k—1)_

FINAL CONTRADICTION

(g% —2g%"1)eqk1 < no. of edges < ecgk’ k1

qg. —e¢=0.
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Sketch of the proofs (about degrees)

1) (degrees in U) Let P denote the point-colours, H the
hyperplane-colours. Let m € U coloured by pg € w. Then

_ _ 1|k—1 1, k+1
e o A e (i !

LHS counts (upper bounds) no. of k-spaces coloured by P\ {po}
or H, RHS counts total no. of k-spaces not through pg meeting 7
in a (k— 1)-space. = degree of 7 is at least eq*~?

2) (degrees in N) Let m € N. Choose a (k — 1)-space inside, and a
not coIoured) k-space containing it:

(
( [k 1] ' [2/<’:kkj11]
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THANK YOU

THANK YOU FOR YOUR ATTENTION
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