# A Hilton-Milner theorem for vector spaces and the chromatic number of $q$-Kneser graphs 

Aart B., A.E. Brouwer, A. Chowdhuri, P. Frankl, T. Mussche, B. Patkós,T. Szőnyi



ALCOMA 10, April 17th 2010, Thurnau, Organizers: thank you for this magnificent meeting, Reinhard: Herzliche Glückwünsche zum 65. Geburtstag.

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)<br>aeb Andries Brouwer, TU-Eindhoven, Netherlands<br>ac Ameerah Chowdhury, Caltech, USA

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)<br>aeb Andries Brouwer, TU-Eindhoven, Netherlands<br>ac Ameerah Chowdhury, Caltech, USA<br>pf Péter Frankl, Japan, France or Hungary

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium
bp Balázs Patkós, ELTE-Budapest, Hungary

## Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)
aeb Andries Brouwer, TU-Eindhoven, Netherlands
ac Ameerah Chowdhury, Caltech, USA
pf Péter Frankl, Japan, France or Hungary
tm Tim Mussche, my student, Möbius, Belgium
bp Balázs Patkós, ELTE-Budapest, Hungary
tsz Tamás Szőnyi, ELTE-Budapest, Hungary

## What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some non-authors (áb, jat, tp, msz):

## What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some non-authors (áb, jat, tp, msz):


## What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some non-authors (áb, jat, tp, msz):


## What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some non-authors (áb, jat, tp, msz):


## What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some non-authors (áb, jat, tp, msz):


## One more author

Much more famous as a juggler: pf

## One more author

Much more famous as a juggler: pf


## A classical result in extremal combinatorics

Erdős-Ko-Rado, 61: If $\mathcal{F}$ is a $k$-uniform intersecting family of subsets of an $n$ element set $S$, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ provided $2 k \leq n$.

If $2 k+1 \leq n$, then equality holds if and only if $\mathcal{F}$ is the family of all subsets containing a fixed element $s \in S$.

The proof from the book, by G.O.H. Katona:
Arrange the points of $S$ in a circle, and count how many members of $\mathcal{F}$ occupy a ( $k$-)segment in this arrangement. Out of the $n$ segments at most $k$ belong to $\mathcal{F}$, and $\frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}$.

## A corresponding stability result

In case of equality in the Erdős-Ko-Rado theorem there is a point belonging to all sets, in other words, the covering number $\tau(\mathcal{F})=1$. What if $\tau \geq 2$ ?

## A corresponding stability result

In case of equality in the Erdős-Ko-Rado theorem there is a point belonging to all sets, in other words, the covering number $\tau(\mathcal{F})=1$. What if $\tau \geq 2$ ?

## Theorem (Hilton-Milner, 67)

Let $\mathcal{F} \subset\binom{[n]}{k}$ be an intersecting family with $2 k+1 \leq n$ and $\tau(\mathcal{F}) \geq 2$. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$. The families achieving that size are
(i) for a $k$-subset $F$ and $x \notin F$ the family

$$
\{F\} \cup\left\{G \in\binom{[n]}{k}: x \in G, F \cap G \neq \emptyset\right\}
$$

(ii) if $k=3$, then for any 3-subset $S$ the family

$$
\left\{F \in\binom{[n]}{3}:|F \cap S| \geq 2\right\}
$$

The q-analogue of the Erdős-Ko-Rado theorem

The q-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space

The q-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space $k$-subsets $\longrightarrow k$-dimensional subspaces

The q-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space $k$-subsets $\longrightarrow k$-dimensional subspaces intersecting $\longrightarrow$ intersecting non-trivially

The q-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space $k$-subsets $\longrightarrow k$-dimensional subspaces intersecting $\longrightarrow$ intersecting non-trivially $\binom{n}{k} \longrightarrow\left[\begin{array}{l}n \\ k\end{array}\right]$ (Gaussian coefficient)

The $q$-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space
$k$-subsets $\longrightarrow k$-dimensional subspaces
intersecting $\longrightarrow$ intersecting non-trivially
$\binom{n}{k} \longrightarrow\left[\begin{array}{l}n \\ k\end{array}\right]$ (Gaussian coefficient)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1} \approx q^{k(n-k)}
$$

The $q$-analogue of the Erdős-Ko-Rado theorem
$n$-set $\longrightarrow n$-dimensional vector space
$k$-subsets $\longrightarrow k$-dimensional subspaces
intersecting $\longrightarrow$ intersecting non-trivially
$\binom{n}{k} \longrightarrow\left[\begin{array}{c}n \\ k\end{array}\right]$ (Gaussian coefficient)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1} \approx q^{k(n-k)}
$$

## Theorem (Hsieh, $q$-analogue of Erdős-Ko-Rado, 75)

$\mathcal{F} \subset\left[\begin{array}{c}V \\ k\end{array}\right]$ intersecting, $n \geq 2 k+1$, then $|\mathcal{F}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$. In case of equality we have a point pencil.

## The $q$-analogue of the Erdős-Ko-Rado theorem

$n$-set $\longrightarrow n$-dimensional vector space
$k$-subsets $\longrightarrow k$-dimensional subspaces
intersecting $\longrightarrow$ intersecting non-trivially
$\binom{n}{k} \longrightarrow\left[\begin{array}{l}n \\ k\end{array}\right]$ (Gaussian coefficient)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1} \approx q^{k(n-k)}
$$

## Theorem (Hsieh, $q$-analogue of Erdős-Ko-Rado, 75)

$\mathcal{F} \subset\left[\begin{array}{c}V \\ k\end{array}\right]$ intersecting, $n \geq 2 k+1$, then $|\mathcal{F}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$. In case of equality we have a point pencil.

Greene-Kleitman (78) did the case $n=2 k$ (not only point-pencils but also their duals!)

## A challange!

Find a $q$-analogue of Katona's circle proof for Erdős-Ko-Rado, maybe using Singer-cycles, in any case using families of $q^{n}-1$ $k$-spaces, with only $q^{k}-1$ belonging to the family.


Gyula Katona (and Rudi Ahlswede)

## Strongly intersecting families

## Theorem (Frankl-Wilson, 86)

$\mathcal{F}$ a $t$-intersecting family of $k$-subspaces of an $n$-space, then:
$|\mathcal{F}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right] \quad$ if $2 k \leq n$,
and
$|\mathcal{F}| \leq\left[\begin{array}{c}2 k-t \\ k\end{array}\right] \quad$ if $2 k-t \leq n \leq 2 k$.

## Strongly intersecting families

## Theorem (Frankl-Wilson, 86)

$\mathcal{F}$ a $t$-intersecting family of $k$-subspaces of an $n$-space, then:
$|\mathcal{F}| \leq\left[\begin{array}{c}n-t \\ k-t\end{array}\right] \quad$ if $2 k \leq n$,
and
$|\mathcal{F}| \leq\left[\begin{array}{c}2 k-t \\ k\end{array}\right] \quad$ if $2 k-t \leq n \leq 2 k$.


## Hilton-Milner families

A collection of $k$-spaces $\mathcal{F}$ is a Hilton-Milner family if

$$
\mathcal{F}=\{U\} \cup\left\{W \in\left[\begin{array}{l}
V \\
k
\end{array}\right]: E \leqslant W, \operatorname{dim}(W \cap U) \geq 1\right\} \cup\left[\begin{array}{c}
E \vee U \\
k
\end{array}\right]
$$

for some fixed $E \in\left[\begin{array}{l}V \\ 1\end{array}\right], U \in\left[\begin{array}{l}V \\ k\end{array}\right]$ with $E \nless U$.
The size of a $\mathrm{H}-\mathrm{M}$ family is
$\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k} \quad\left(<\left[\begin{array}{l}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\right)$.

## Theorem ( $q$-analogue of Hilton-Milner)

Let $V$ be an n-dimensional vector space over $G F(q), q \geq 3$ and $n \geq 2 k+1$. Then for any intersecting family $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ with $\tau(\mathcal{F}) \geq 2$ we have $|\mathcal{F}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k}$.
If $\mathcal{F}$ is of this size, then either $\mathcal{F}$ is a $H-M$ family, or $k=3$ and $\mathcal{F}=\left\{F \in\left[\begin{array}{l}V \\ k\end{array}\right]: \operatorname{dim}(S \cap F) \geq 2\right\}$ for some 3 -space $S$ of $V$.
Furthermore if $k \geq 4$, then there exists an $\varepsilon$ (independent of $n, q, k)$ such that if $|\mathcal{F}| \geq(1-\varepsilon)\left(\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k}\right)$, then $\mathcal{F}$ is a subfamily of a $\mathrm{H}-\mathrm{M}$ family.

## Rough sketch of the proof:

Step 0: The case $k=2$ : Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: $\mathrm{H}-\mathrm{M}$.

## Rough sketch of the proof:

Step 0: The case $k=2$ : Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: $\mathrm{H}-\mathrm{M}$.

Key concept: a hitting subspace: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$ : dimension of smallest hitting subspace.
A H-M familie has $\tau=2$.
( $\tau=1$ iff point-pencil E-K-R)
$\tau=2$ : hitting lines (2-spaces),
$\mathcal{T}$ : set of hitting lines ( $\mathcal{F}$ is maximal $\rightarrow \mathcal{T}$ intersecting)

## Rough sketch of the proof:

Step 0: The case $k=2$ : Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: $\mathrm{H}-\mathrm{M}$.

Key concept: a hitting subspace: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$ : dimension of smallest hitting subspace.
A H-M familie has $\tau=2$.
( $\tau=1$ iff point-pencil E-K-R)
$\tau=2$ : hitting lines (2-spaces),
$\mathcal{T}$ : set of hitting lines ( $\mathcal{F}$ is maximal $\rightarrow \mathcal{T}$ intersecting)
Step 1: $\tau=2$, structure of $\mathcal{T}$ (see Step 0):
either $\left[\begin{array}{c}V \\ 2\end{array}\right]$, where $\operatorname{dim} V=3$, or lines through a point (1-space) $P$ in an ( $I+1$ )-space.

## Rough sketch of the proof:

Step 0: The case $k=2$ : Projectively we have an intersecting collection of lines. Now either they all pass through a point: E-K-R or they are in a plane: $\mathrm{H}-\mathrm{M}$.

Key concept: a hitting subspace: meets all $F \in \mathcal{F}$. $\tau(\mathcal{F})$ : dimension of smallest hitting subspace.
A H-M familie has $\tau=2$.
( $\tau=1$ iff point-pencil E-K-R)
$\tau=2$ : hitting lines (2-spaces),
$\mathcal{T}$ : set of hitting lines ( $\mathcal{F}$ is maximal $\rightarrow \mathcal{T}$ intersecting)
Step 1: $\tau=2$, structure of $\mathcal{T}$ (see Step 0):
either $\left[\begin{array}{c}V \\ 2\end{array}\right]$, where $\operatorname{dim} V=3$, or lines through a point (1-space) $P$ in an ( $I+1$ )-space.
Step 2: Essential part of $\mathcal{F}$ is the $k$-spaces containing an element of $\mathcal{T}$.

## Proposition (Description of $\mathcal{T}$-s if $\tau(\mathcal{F})=2$ :)

Let $\mathcal{F}$ be a maximal intersecting family with $\tau(\mathcal{F})=2$. Then
(i) $|\mathcal{T}|=1$
(ii) $|\mathcal{T}|>1, \tau(\mathcal{T})=1$, and there is a 2-subspace $L$ and a 1 -subspace $E \nless L$ so that $\mathcal{T}=\{\ell: \ell=E \vee W, \operatorname{dim} W=1, W \leqslant L\}$.
(iii) $|\mathcal{T}|>1, \tau(\mathcal{T})=1$, and there is an $I(\geq 3)$-subspace $L$ and a 1 -subspace $E \nless L$ so that $\mathcal{T}=\{\ell: \ell=E \vee W, \operatorname{dim} W=1, W \leqslant L\}$.
(iv) $\tau(\mathcal{T})=2, \mathcal{T}=\left[\begin{array}{l}A \\ 2\end{array}\right]$ for some 3-space $A$ and $\mathcal{F}=\{U: U \cap A$ has dimension 2$\}$ and $|\mathcal{F}|=\left(q^{2}+q+1\right)\left(\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-1\right)+\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]$.
In case (ii) and (iii) there is a 1-subspace $E$ and an I-subspace $L$ such that $\mathcal{F}$ contains the set $\mathcal{F}_{E, L}$ of all $k$-spaces containing $E$ and intersecting $L$.

## Proposition (Bounds for $\mathcal{F}$ in the previous prop.)

(i) $\left[\begin{array}{l}n-2 \\ k-2\end{array}\right]<|\mathcal{F}|<\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]+(q+1)\left(\left[\begin{array}{l}k \\ 1\end{array}\right]-1\right)\left[\begin{array}{l}k \\ 1\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]$;
(ii) $(q+1)\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-q\left[\begin{array}{c}n-3 \\ k-3\end{array}\right] \leq|\mathcal{F}| \leq$

$$
(q+1)\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]-q\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right]+\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]\right)\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right]+q^{2}\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right]
$$

(iii) $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}n-2 \\ k-2\end{array}\right]-q\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}n-3 \\ k-3\end{array}\right] \leq|\mathcal{F}| \leq$

$$
\left[\begin{array}{l}
I \\
1
\end{array}\right]\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]+\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]\right)\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]-\left[\begin{array}{l}
I \\
1
\end{array}\right]\right)\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]+q^{I}\left[\begin{array}{c}
n-I \\
k-I
\end{array}\right] ;
$$

(iv) $|\mathcal{F}|=\left(q^{2}+q+1\right)\left(\left[\begin{array}{l}n-2 \\ k-2\end{array}\right]-1\right)+\left[\begin{array}{l}n-3 \\ k-3\end{array}\right]$.

The last two terms of the upper bound for the size $\mathcal{F}$ given in (ii) and (iii) give an upper bound on $\left|\mathcal{F} \backslash \mathcal{F}_{E, L}\right|$.

## Rough sketch of the proof (continued):

Step 3: Guarantee $\tau=2$ :

## Proposition

Suppose that $k \geq 3, n \geq 2 k+1$, and for $q=2$ we have $n \geq 2 k+2$. Let $|\mathcal{F}| \geq\left[\begin{array}{c}n-2 \\ k-2\end{array}\right] f(q)$. For $I \geq 3$ we have the following: whenever an I-subspace is meeting every $F \in \mathcal{F}$ then there is an (I -1 )-subspace meeting $\mathcal{F}$ if and only if

$$
\begin{equation*}
\frac{q^{n-2 k}(I-2)(q-1)^{\prime} f(q)}{\left(q^{\prime}-1\right)\left(q^{k}-1\right)}>1 \tag{1}
\end{equation*}
$$

## Corollary

If $|\mathcal{F}| \geq\left[\begin{array}{c}n-2 \\ k-2\end{array}\right] \frac{q^{2}+q+1}{(q-1)^{2}} q^{3 k-n}$, then $\tau(\mathcal{F})=2$, that is $\mathcal{F}$ is contained in one of the systems described earlier.

For $n \geq 3 k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces)

For $n \geq 3 k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces)
For $n=2 k+1$ the above bound is worse than the H-M-bound

For $n \geq 3 k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces)
For $n=2 k+1$ the above bound is worse than the H-M-bound Step 4: A proof for $k=3$ (and essentially $n=2 k+1=7$ ).

For $n \geq 3 k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces)
For $n=2 k+1$ the above bound is worse than the $\mathrm{H}-\mathrm{M}$-bound Step 4: A proof for $k=3$ (and essentially $n=2 k+1=7$ ).
Step 5: $k \geq 4, n=2 k+1$, existence of hitting 3 -spaces.

## Corollary

If $|\mathcal{F}| \geq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\left(1-\frac{1}{q^{3}-q}\right)$, then $\tau(\mathcal{F}) \leq 2$ if $n \geq 2 k+2$ and $q \geq 3$, and $\tau(\mathcal{F}) \leq 3$ if $n=2 k+1$ and $q \geq 4$.

For $n \geq 3 k$ all the systems described in earlier Proposition occur. (Stability result for intersecting subspaces)
For $n=2 k+1$ the above bound is worse than the $\mathrm{H}-\mathrm{M}$-bound Step 4: A proof for $k=3$ (and essentially $n=2 k+1=7$ ).
Step 5: $k \geq 4, n=2 k+1$, existence of hitting 3 -spaces.

## Corollary

If $|\mathcal{F}| \geq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\left(1-\frac{1}{q^{3}-q}\right)$, then $\tau(\mathcal{F}) \leq 2$ if $n \geq 2 k+2$ and $q \geq 3$, and $\tau(\mathcal{F}) \leq 3$ if $n=2 k+1$ and $q \geq 4$.

Step 6: $k \geq 4, n=2 k+1, q \geq 4$ existence of hitting 3-spaces implies $\tau(\mathcal{F}) \leq 2$.

Idea: Averaging
$\exists E, \operatorname{dim} E=1$ for which $\left|\mathcal{F}_{E}\right| \geq|\mathcal{F}| /\left[\begin{array}{l}k \\ 1\end{array}\right]$
If $\tau(\mathcal{F})=\ell$, then $\exists E:\left|\mathcal{F}_{E}\right| \geq|\mathcal{F}| /\left[\begin{array}{l}\ell \\ 1\end{array}\right]$
$\tau(\mathcal{F})>1 \rightarrow \exists L \geq E, \operatorname{dim} L=2$ for which
$\left|\mathcal{F}_{L}\right| \geq\left|F_{E}\right| /\left[\begin{array}{l}k \\ 1\end{array}\right] \geq|\mathcal{F}| /\left[\begin{array}{l}\ell \\ 1\end{array}\right]\left[\begin{array}{l}k \\ 1\end{array}\right]$
$\tau(\mathcal{F})>2 \rightarrow \exists W \geq L, \operatorname{dim} W=3$ for which
$\left|\mathcal{F}_{W}\right| \geq\left|F_{L}\right| /\left[\begin{array}{l}k \\ 1\end{array}\right] \geq|\mathcal{F}| /\left[\begin{array}{l}\ell \\ 1\end{array}\right]\left[\begin{array}{l}k \\ 1\end{array}\right]^{2}$
and so on...
Contradiction if the bound is larger than $\left[\begin{array}{c}n-s \\ k-s\end{array}\right]$, or, in other words we found a hitting ( $s-1$ )-subspace.
For example,
If $A \notin \mathcal{T}, \operatorname{dim} A=2$, then $\left|\mathcal{F}_{A}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]$.

## Chromatic number of Kneser graphs

The vertex set of the Kneser graph $K_{n: k}$ is $\binom{V}{k},|V|=n$. Two vertices ( $k$-subsets) of $K_{n: k}$ are adjacent if they are disjoint. $K_{5: 2}$ is the Petersen-graph:

## Chromatic number of Kneser graphs

The vertex set of the Kneser graph $K_{n: k}$ is $\binom{V}{k},|V|=n$. Two vertices ( $k$-subsets) of $K_{n: k}$ are adjacent if they are disjoint. $K_{5: 2}$ is the Petersen-graph:


Lovász 78: For $n=2 k+r$ the chromatic number of $K_{n: k}$ is $r+2$. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04. For $k=2,3$ it can be proved using the Hilton-Milner theorem!

Lovász 78: For $n=2 k+r$ the chromatic number of $K_{n: k}$ is $r+2$. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04. For $k=2,3$ it can be proved using the Hilton-Milner theorem!


Lovász 78: For $n=2 k+r$ the chromatic number of $K_{n: k}$ is $r+2$. The proof uses topological methods. A simpler proof was given by Bárány 78, a prize-winning proof by Joshua Greene 02 and recently an elementary (that is: not topological) proof by Matoušek 04.
For $k=2,3$ it can be proved using the Hilton-Milner theorem!


## Chromatic number of the $q$-analogue of the Kneser graph

The vertex set of the $q$-Kneser graph $q K_{n: k}$ is $\left[\begin{array}{l}V \\ k\end{array}\right], \operatorname{dim} V=n$. Two vertices ( $k$-subspaces) of $q K_{n: k}$ are adjacent if they are disjoint.

## Chromatic number of the $q$-analogue of the Kneser graph

The vertex set of the $q$-Kneser graph $q K_{n: k}$ is $\left[\begin{array}{l}V \\ k\end{array}\right], \operatorname{dim} V=n$. Two vertices ( $k$-subspaces) of $q K_{n: k}$ are adjacent if they are disjoint.

## Theorem ( $q$-analogue of Lovász' theorem)

If $n \geq 2 k+1$ and $q \geq 3$, then the chromatic number $\chi\left(q K_{n: k}\right)$ equals $\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]$. Moreover, each colour class of a minimum colouring is a point-pencil and the points are (one-spaces) in an ( $n-k+1$ )-dimensional subspace.

## Chromatic number of the $q$-analogue of the Kneser graph

The vertex set of the $q$-Kneser graph $q K_{n: k}$ is $\left[\begin{array}{l}V \\ k\end{array}\right], \operatorname{dim} V=n$. Two vertices ( $k$-subspaces) of $q K_{n: k}$ are adjacent if they are disjoint.

## Theorem ( $q$-analogue of Lovász' theorem)

If $n \geq 2 k+1$ and $q \geq 3$, then the chromatic number $\chi\left(q K_{n: k}\right)$ equals $\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]$. Moreover, each colour class of a minimum colouring is a point-pencil and the points are (one-spaces) in an ( $n-k+1$ )-dimensional subspace.
$k=2$ : Ameerah Chowdhury, Chris Godsil, Gordon Royle $q>q_{k}$ : Tim Mussche

## Bose-Burton plus a useful extension

## Theorem (Bose-Burton, 66)

If $\operatorname{dim}(V)=n$ and $\mathcal{E}$ is a family of 1 -spaces in $V$ such that any $k$-space in $V$ contains an element of $\mathcal{E}$, then $|\mathcal{E}| \geq\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]$. Equality iff $\mathcal{E}=\left[\begin{array}{c}H \\ 1\end{array}\right]$ for some $(n-k+1)$-space $H$ in $V$.

In maybe more familiar terms: $\mathcal{E}$ is a (trivial) blocking set for $(k-1)$-spaces in PG $(n-1, q)$.

## Proposition (Useful extension)

If $\operatorname{dim}(V)=n$ and $\mathcal{E}$ is a family of $\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]-\varepsilon$ one-spaces in $V$, then the number of $k$-spaces in $V$ disjoint from all $E \in \mathcal{E}$ is at least $\varepsilon \boldsymbol{q}^{(k-1)(n-k+1)} /\left[\begin{array}{l}k \\ 1\end{array}\right]$.
(Projective formulation: In $\operatorname{PG}(n-1, q)$ we have $\mathcal{E}$, a set of $\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]-\varepsilon$ points. To show: there are at least $\varepsilon q^{(k-1)(n-k+1)} /\left[\begin{array}{l}k \\ 1\end{array}\right]$ disjoint $k(-1)$-spaces).

Induction on $k$. For $k=1$ there is nothing to prove. Next, let $k>1$ and count incident pairs ( 1 -space, $k$-space), where the $k$-space is disjoint from all $E \in \mathcal{E}$ :

$$
\begin{gathered}
N\left[\begin{array}{l}
k \\
1
\end{array}\right] \geq\left(\left[\begin{array}{l}
n \\
1
\end{array}\right]-\left[\begin{array}{c}
n-k+1 \\
1
\end{array}\right]+\varepsilon\right) \varepsilon q^{(k-2)(n-k+1)} /\left[\begin{array}{c}
k-1 \\
1
\end{array}\right] \geq \\
\geq \varepsilon q^{(k-1)(n-k+1)}
\end{gathered}
$$

Of course the true value is $\varepsilon q^{(k-1)(n-k)}$, a non-trivial result due to Klaus Metsch using as a main ingredient an algebraic lemma from Zsuzsa Weiner and Tamás Szőnyi.

Let $G(\mathrm{ood})$ be the set of centres of point-pencils used in a minimal colouring, $B(\mathrm{ad})$ the other colours.
If $|B|=0$ then from Bose-Burton we know that $|G|$ is at least $\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]$ and we know everything.
If $|G|=\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]-\varepsilon$ then by our extension we find at least
$\varepsilon q^{(k-1)(n-k+1)} /\left[\begin{array}{l}k \\ 1\end{array}\right]$ uncoloured $k$-spaces. Since a bad colour can only be used the size of a $\mathrm{H}-\mathrm{M}$ family time, and

$$
\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]+q^{k}<q^{(k-1)(n-k+1)} /\left[\begin{array}{l}
k \\
1
\end{array}\right]
$$

for $q \geq 3$, we have a contradiction.

The most interesting, but alas also the most difficult case, $q K_{2 k: k}$. Largest cocliques: point pencils and their duals (Godsil, Newman).

Second largest? Conjecture: Hilton-Milner families, and their duals. Chromatic number $\chi\left(q K_{2 k: k}\right)$ ? Conjecture: $q^{k}+q^{k-1}$. ( $k=2$ easy, $k=3$ Eisfeld-Storme-Sziklai)

Colouring with $q^{k}+q^{k-1}$ colours:

- points of $\Pi_{k+1} \backslash \Pi_{k}$
- hyperplanes through $\Pi_{k}$ that do not contain $\Pi_{k+1}$


## A weak H-M bound for $n=2 k$

PROOF for $q>q_{k}$.
As $q>q_{k},\left[\begin{array}{l}n \\ k\end{array}\right] \approx q^{(n-k) k}$.
Point-pencils: $\approx q^{k(k-1)}$.

## Theorem

Let $\mathcal{F}$ be a maximal coclique in $q K_{2 k: k}$ with $\tau(\mathcal{F})>1$. Then $\mathcal{F} \mid \leq c q^{k^{2}-k-1}$, where $c>1$.

Sketch of the proof (for $k=3$ ): $|H M|=q\left(q^{2}+q+1\right)^{2}+1$. If $|\mathcal{F}|>(q+1)\left(q^{2}+q+1\right)^{2} \Longrightarrow \exists L$ s.t. there are more than $q+1$ elements of $\mathcal{F}$ through $L$; they generate a 5 -space $\Longrightarrow$ there are at most $q^{4}$ planes not meeting the greedy line $L$.
Leaving out the elements of $\mathcal{F}$ not meeting $L$ we get a system $\mathcal{F}^{*}$ with $\tau=2$. Now
$\left|\mathcal{F}^{*}\right| \leq(q+1)\left(q^{2}+q+1\right)\left(q^{2}+q\right)+\left(q^{3}+q^{2}+q+1\right)$.
So we get by putting together everything that

$$
|\mathcal{F}| \leq(q+1)\left(q^{2}+q+1\right)^{2}+q^{4}\left(-q^{3}-q^{2}-q\right)
$$

if $\mathcal{F}$ is not contained in a point-pencil or its dual.

## The chromatic number of $q$-Kneser graphs for $n=2 k$, III.

Trivial bound: $\chi \geq\left[\begin{array}{c}2 k \\ k\end{array}\right] /\left[\begin{array}{c}2 k-1 \\ k-1\end{array}\right]=q^{k}+1$.

## Proposition

If in the colouring only point and hyperplane colours are used then we need at least $q^{k}+q^{k-1}$ colours.

Now suppose we have $q^{k}+q^{k-1}-\varepsilon$ point/hyperplane colours (out of $q^{k}-q^{k-1}$ or less).

## Remark

If the second largest coclique has size at most $c q^{k^{2}-k-1} \leq\left[\begin{array}{c}2 k-1 \\ k-1\end{array}\right] / 2$, then $\varepsilon \leq 2 q^{k-1}$.

## A bipartite graph

Define a bipartite graph in the following way:
Upper points $N$ : $k$-spaces not coloured by the $q^{k}+q^{k-1}-\varepsilon$ point/hyperplane colours.
$|N| \leq \varepsilon c q^{k^{2}-k-1}$.
Lower points $U$ : $k$-spaces that are uniquely coloured
Edge: intersect in a $(k-1)$-dim. subspace

## Lemma

$$
|U| \geq 2\left(\left[\begin{array}{c}
2 k \\
k
\end{array}\right]-|N|\right)-\left(q^{k}+q^{k-1}-\varepsilon\right)\left[\begin{array}{c}
2 k-1 \\
k-1
\end{array}\right]
$$

Since $\varepsilon \leq 2 q^{k-1}$ and $|N| \leq \varepsilon c q^{k^{2}-k-1}$, we get that $|U| \approx\left[\begin{array}{c}2 k \\ k\end{array}\right]$.

## Point degrees, final contradiction

## Lemma

The degree of a point in $U$ is at least $\varepsilon q^{k-1}$.

## Lemma

The degree of a point of $N$ is at most $\left[\begin{array}{l}k \\ 1\end{array}\right]\left(\left[\begin{array}{c}k+1 \\ 1\end{array}\right]-1\right)\left(\approx q^{2 k-1}\right)$.
FINAL CONTRADICTION
$\left(q^{k^{2}}-2 q^{k^{2}-1}\right) \varepsilon q^{k-1} \leq$ no. of edges $\leq \varepsilon c q^{k^{2}-k-1} q . \Longrightarrow \varepsilon=0$.

## Sketch of the proofs (about degrees)

1) (degrees in $U$ ) Let $P$ denote the point-colours, $H$ the hyperplane-colours. Let $\pi \in U$ coloured by $p_{0} \in \pi$. Then

$$
(|P|-1) q^{k-1}+|H| q^{k-1}+q^{k-1}\left[\begin{array}{c}
k-1 \\
1
\end{array}\right] \geq q^{k-1}\left(\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]-1\right)
$$

LHS counts (upper bounds) no. of $k$-spaces coloured by $P \backslash\left\{p_{0}\right\}$ or $H$, RHS counts total no. of $k$-spaces not through $p_{0}$ meeting $\pi$ in a $(k-1)$-space. $\Longrightarrow$ degree of $\pi$ is at least $\varepsilon q^{k-1}$
2) (degrees in $N$ ) Let $\pi \in N$. Choose a ( $k-1$ )-space inside, and a (not coloured) $k$-space containing it:
$(\leq)\left[\begin{array}{c}k \\ k-1\end{array}\right] \cdot\left[\begin{array}{c}2 k-k+1 \\ k-k+1\end{array}\right]$.

THANK YOU FOR YOUR ATTENTION

