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Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)

aeb Andries Brouwer, TU-Eindhoven, Netherlands

ac Ameerah Chowdhury, Caltech, USA

pf Péter Frankl, Japan, France or Hungary

tm Tim Mussche, my student, Möbius, Belgium

bp Balázs Patkós, ELTE-Budapest, Hungary

tsz Tamás Szőnyi, ELTE-Budapest, Hungary
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tsz Tamás Szőnyi, ELTE-Budapest, Hungary

ab, aeb, ac, pf, tm, bp, tsz The chromatic number of q-Kneser graphs



Who are we (and why so many)?

ab Aart Blokhuis, TU-Eindhoven, Netherlands (me)

aeb Andries Brouwer, TU-Eindhoven, Netherlands

ac Ameerah Chowdhury, Caltech, USA

pf Péter Frankl, Japan, France or Hungary

tm Tim Mussche, my student, Möbius, Belgium
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What do we look like?

Here are four of the authors (ab, aeb, tm and tsz) and some
non-authors (áb, jat, tp, msz):
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One more author

Much more famous as a juggler: pf
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A classical result in extremal combinatorics

Erdős-Ko-Rado, 61: If F is a k-uniform intersecting family of
subsets of an n element set S , then |F| ≤

(n−1
k−1

)
provided 2k ≤ n.

If 2k + 1 ≤ n, then equality holds if and only if F is the family of
all subsets containing a fixed element s ∈ S .

The proof from the book, by G.O.H. Katona:
Arrange the points of S in a circle, and count how many members
of F occupy a (k-)segment in this arrangement. Out of the n
segments at most k belong to F , and k

n

(n
k

)
=
(n−1
k−1

)
.
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A corresponding stability result

In case of equality in the Erdős-Ko-Rado theorem there is a point
belonging to all sets, in other words, the covering number
τ(F) = 1. What if τ ≥ 2?

Theorem (Hilton-Milner, 67)

Let F ⊂
([n]

k

)
be an intersecting family with 2k + 1 ≤ n and

τ(F) ≥ 2. Then |F| ≤
(n−1
k−1

)
−
(n−k−1

k−1

)
+ 1. The families

achieving that size are

(i) for a k-subset F and x 6∈ F the family

{F} ∪ {G ∈
([n]

k

)
: x ∈ G ,F ∩ G 6= ∅},

(ii) if k = 3, then for any 3-subset S the family
{F ∈

([n]
3

)
: |F ∩ S | ≥ 2}.
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The q-analogue of the Erdős-Ko-Rado theorem

n-set −→ n-dimensional vector space
k-subsets −→ k-dimensional subspaces
intersecting −→ intersecting non-trivially(n
k

)
−→

[n
k

]
(Gaussian coefficient)[

n

k

]
q

=
k−1∏
i=0

qn−i − 1

qk−i − 1
≈ qk(n−k).

Theorem (Hsieh, q-analogue of Erdős-Ko-Rado, 75)

F ⊂
[V
k

]
intersecting, n ≥ 2k + 1, then |F| ≤

[n−1
k−1

]
. In case of

equality we have a point pencil.

Greene-Kleitman (78) did the case n = 2k (not only point-pencils
but also their duals!)
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A challange!

Find a q-analogue of Katona’s circle proof for Erdős-Ko-Rado,
maybe using Singer-cycles, in any case using families of qn − 1
k-spaces, with only qk − 1 belonging to the family.

Gyula Katona (and Rudi Ahlswede)
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Strongly intersecting families

Theorem (Frankl-Wilson, 86)

F a t-intersecting family of k-subspaces of an n-space, then:
|F| ≤

[n−t
k−t

]
if 2k ≤ n,

and
|F| ≤

[2k−t
k

]
if 2k − t ≤ n ≤ 2k.
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Hilton-Milner families

A collection of k-spaces F is a Hilton-Milner family if

F = {U} ∪
{

W ∈
[

V

k

]
: E 6 W , dim(W ∩ U) ≥ 1

}
∪
[

E ∨ U

k

]
,

for some fixed E ∈
[V

1

]
,U ∈

[V
k

]
with E 66 U.

The size of a H-M family is[n−1
k−1

]
− qk(k−1)

[n−k−1
k−1

]
+ qk (<

[k
1

][n−2
k−2

]
).
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Theorem (q-analogue of Hilton-Milner)

Let V be an n-dimensional vector space over GF (q), q ≥ 3 and
n ≥ 2k + 1. Then for any intersecting family F ⊆

[V
k

]
with

τ(F) ≥ 2 we have |F| ≤
[n−1
k−1

]
− qk(k−1)

[n−k−1
k−1

]
+ qk .

If F is of this size, then either F is a H-M family, or k = 3 and
F = {F ∈

[V
k

]
: dim(S ∩ F ) ≥ 2} for some 3-space S of V .

Furthermore if k ≥ 4, then there exists an ε (independent of

n, q, k) such that if |F| ≥ (1− ε)
([n−1

k−1

]
− qk(k−1)

[n−k−1
k−1

]
+ qk

)
,

then F is a subfamily of a H-M family.
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Rough sketch of the proof:
Step 0: The case k = 2: Projectively we have an intersecting
collection of lines. Now either they all pass through a point: E-K-R
or they are in a plane: H-M.

Key concept: a hitting subspace: meets all F ∈ F .
τ(F): dimension of smallest hitting subspace.
A H-M familie has τ = 2.
(τ = 1 iff point-pencil E-K-R)
τ = 2: hitting lines (2-spaces),
T : set of hitting lines (F is maximal → T intersecting)
Step 1: τ = 2, structure of T (see Step 0):
either

[V
2

]
, where dim V = 3, or lines through a point (1-space) P

in an (l + 1)-space.
Step 2: Essential part of F is the k-spaces containing an element
of T .
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Proposition (Description of T -s if τ(F) = 2:)

Let F be a maximal intersecting family with τ(F) = 2. Then

(i) |T | = 1

(ii) |T | > 1, τ(T ) = 1, and there is a 2-subspace L and a
1-subspace E 66 L so that
T = {` : ` = E ∨W , dim W = 1,W 6 L}.

(iii) |T | > 1, τ(T ) = 1, and there is an l(≥ 3)-subspace L and a
1-subspace E 66 L so that
T = {` : ` = E ∨W , dim W = 1,W 6 L}.

(iv) τ(T ) = 2, T =
[A
2

]
for some 3-space A and

F = {U : U ∩ A has dimension 2} and
|F| = (q2 + q + 1)(

[n−2
k−2

]
− 1) +

[n−3
k−3

]
.

In case (ii) and (iii) there is a 1-subspace E and an l-subspace L
such that F contains the set FE ,L of all k-spaces containing E and
intersecting L.
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Proposition (Bounds for F in the previous prop.)

(i)
[n−2
k−2

]
< |F| <

[n−2
k−2

]
+ (q + 1)

([k
1

]
− 1
) [k

1

][n−3
k−3

]
;

(ii) (q + 1)
[n−2
k−2

]
− q
[n−3
k−3

]
≤ |F| ≤

(q + 1)
[n−2
k−2

]
− q
[n−3
k−3

]
+ (
[k
1

]
)(
[k
1

]
−
[2
1

]
)
[n−3
k−3

]
+ q2

[k
1

][n−3
k−3

]
;

(iii)
[ l
1

][n−2
k−2

]
− q
[ l
2

][n−3
k−3

]
≤ |F| ≤[ l

1

][n−2
k−2

]
+ (
[k
1

]
)(
[k
1

]
−
[ l
1

]
)
[n−3
k−3

]
+ ql

[n−l
k−l

]
;

(iv) |F| = (q2 + q + 1)(
[n−2
k−2

]
− 1) +

[n−3
k−3

]
.

The last two terms of the upper bound for the size F given in (ii)
and (iii) give an upper bound on |F \ FE ,L|.
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Rough sketch of the proof (continued):
Step 3: Guarantee τ = 2:

Proposition

Suppose that k ≥ 3, n ≥ 2k + 1, and for q = 2 we have
n ≥ 2k + 2. Let |F| ≥

[n−2
k−2

]
f (q). For l ≥ 3 we have the following:

whenever an l-subspace is meeting every F ∈ F then there is an
(l − 1)-subspace meeting F if and only if

qn−2k(l − 2)(q − 1)l f (q)

(ql − 1)(qk − 1)
> 1. (1)

Corollary

If |F| ≥
[n−2
k−2

]q2+q+1
(q−1)2

q3k−n, then τ(F) = 2, that is F is contained

in one of the systems described earlier.
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For n ≥ 3k all the systems described in earlier Proposition occur.
(Stability result for intersecting subspaces)

For n = 2k + 1 the above bound is worse than the H-M-bound
Step 4: A proof for k = 3 (and essentially n = 2k + 1 = 7).
Step 5: k ≥ 4, n = 2k + 1, existence of hitting 3-spaces.

Corollary

If |F| ≥
[k
1

][n−2
k−2

]
(1− 1

q3−q
), then τ(F) ≤ 2 if n ≥ 2k + 2 and

q ≥ 3, and τ(F) ≤ 3 if n = 2k + 1 and q ≥ 4.

Step 6: k ≥ 4, n = 2k + 1, q ≥ 4 existence of hitting 3-spaces
implies τ(F) ≤ 2.
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Step 4: A proof for k = 3 (and essentially n = 2k + 1 = 7).
Step 5: k ≥ 4, n = 2k + 1, existence of hitting 3-spaces.

Corollary

If |F| ≥
[k
1

][n−2
k−2

]
(1− 1

q3−q
), then τ(F) ≤ 2 if n ≥ 2k + 2 and

q ≥ 3, and τ(F) ≤ 3 if n = 2k + 1 and q ≥ 4.

Step 6: k ≥ 4, n = 2k + 1, q ≥ 4 existence of hitting 3-spaces
implies τ(F) ≤ 2.
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Idea: Averaging
∃E , dim E = 1 for which |FE | ≥ |F|/

[k
1

]
If τ(F) = `, then ∃E : |FE | ≥ |F|/

[
`
1

]
τ(F) > 1→ ∃L ≥ E , dim L = 2 for which
|FL| ≥ |FE |/

[k
1

]
≥ |F|/

[
`
1

][k
1

]
τ(F) > 2→ ∃W ≥ L, dim W = 3 for which

|FW | ≥ |FL|/
[k
1

]
≥ |F|/

[
`
1

][k
1

]2
and so on...
Contradiction if the bound is larger than

[n−s
k−s

]
, or, in other words

we found a hitting (s − 1)-subspace.
For example,
If A /∈ T , dim A = 2, then |FA| ≤

[k
1

][n−3
k−3

]
.
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Chromatic number of Kneser graphs

The vertex set of the Kneser graph Kn:k is
(V

k

)
, |V | = n. Two

vertices (k-subsets) of Kn:k are adjacent if they are disjoint.

K5:2 is the Petersen-graph:
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Lovász’ theorem

Lovász 78: For n = 2k + r the chromatic number of Kn:k is r + 2.

The proof uses topological methods. A simpler proof was given by
Bárány 78, a prize-winning proof by Joshua Greene 02 and recently
an elementary (that is: not topological) proof by Matoušek 04.

For k = 2, 3 it can be proved using the Hilton-Milner theorem!
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Chromatic number of the q-analogue of the Kneser graph

The vertex set of the q-Kneser graph qKn:k is
[V
k

]
, dim V = n.

Two vertices (k-subspaces) of qKn:k are adjacent if they are
disjoint.

Theorem (q-analogue of Lovász’ theorem)

If n ≥ 2k + 1 and q ≥ 3, then the chromatic number χ(qKn:k)
equals

[n−k+1
1

]
. Moreover, each colour class of a minimum

colouring is a point-pencil and the points are (one-spaces) in an
(n − k + 1)-dimensional subspace.

k = 2: Ameerah Chowdhury, Chris Godsil, Gordon Royle
q > qk : Tim Mussche
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Bose-Burton plus a useful extension

Theorem (Bose-Burton, 66)

If dim(V ) = n and E is a family of 1-spaces in V such that any
k-space in V contains an element of E , then |E| ≥

[n−k+1
1

]
.

Equality iff E =
[H

1

]
for some (n − k + 1)-space H in V .

In maybe more familiar terms: E is a (trivial) blocking set for
(k − 1)-spaces in PG(n − 1, q).

Proposition (Useful extension)

If dim(V ) = n and E is a family of
[n−k+1

1

]
− ε one-spaces in V ,

then the number of k-spaces in V disjoint from all E ∈ E is at
least εq(k−1)(n−k+1)/

[k
1

]
.
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Proof of the extension

(Projective formulation: In PG(n − 1, q) we have E , a set of[n−k+1
1

]
− ε points. To show: there are at least εq(k−1)(n−k+1)/

[k
1

]
disjoint k(−1)-spaces).

Induction on k. For k = 1 there is nothing to prove. Next, let
k > 1 and count incident pairs (1-space, k-space), where the
k-space is disjoint from all E ∈ E :

N

[
k

1

]
≥
([

n

1

]
−
[

n − k + 1

1

]
+ ε

)
εq(k−2)(n−k+1)/

[
k − 1

1

]
≥

≥ εq(k−1)(n−k+1).

Of course the true value is εq(k−1)(n−k), a non-trivial result due to
Klaus Metsch using as a main ingredient an algebraic lemma from
Zsuzsa Weiner and Tamás Szőnyi.
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The chromatic number of q-Kneser

Let G (ood) be the set of centres of point-pencils used in a minimal
colouring, B(ad) the other colours.
If |B| = 0 then from Bose-Burton we know that |G | is at least[n−k+1

1

]
and we know everything.

If |G | =
[n−k+1

1

]
− ε then by our extension we find at least

εq(k−1)(n−k+1)/
[k
1

]
uncoloured k-spaces. Since a bad colour can

only be used the size of a H-M family time, and[
n − 1

k − 1

]
− qk(k−1)

[
n − k − 1

k − 1

]
+ qk < q(k−1)(n−k+1)/

[
k

1

]
for q ≥ 3, we have a contradiction.
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The chromatic number of q-Kneser II. n = 2k

The most interesting, but alas also the most difficult case, qK2k:k .

Largest cocliques: point pencils and their duals (Godsil, Newman).

Second largest? Conjecture: Hilton-Milner families, and their duals.
Chromatic number χ(qK2k:k)? Conjecture: qk + qk−1.
(k = 2 easy, k = 3 Eisfeld-Storme-Sziklai)

Colouring with qk + qk−1 colours:

• points of Πk+1 \ Πk

• hyperplanes through Πk that do not contain Πk+1
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A weak H-M bound for n = 2k

PROOF for q > qk .

As q > qk ,
[n
k

]
≈ q(n−k)k .

Point-pencils: ≈ qk(k−1).

Theorem

Let F be a maximal coclique in qK2k:k with τ(F) > 1. Then
F| ≤ cqk2−k−1, where c > 1.
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Proof for k = 3

Sketch of the proof (for k = 3): |HM| = q(q2 + q + 1)2 + 1. If
|F| > (q + 1)(q2 + q + 1)2 =⇒ ∃L s.t. there are more than q + 1
elements of F through L; they generate a 5-space =⇒ there are at
most q4 planes not meeting the greedy line L.
Leaving out the elements of F not meeting L we get a system F∗

with τ = 2. Now
|F∗| ≤ (q + 1)(q2 + q + 1)(q2 + q) + (q3 + q2 + q + 1).
So we get by putting together everything that

|F| ≤ (q + 1)(q2 + q + 1)2 + q4(−q3 − q2 − q),

if F is not contained in a point-pencil or its dual.
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The chromatic number of q-Kneser graphs for n = 2k , III.

Trivial bound: χ ≥
[2k

k

]
/
[2k−1

k−1

]
= qk + 1.

Proposition

If in the colouring only point and hyperplane colours are used then
we need at least qk + qk−1 colours.

Now suppose we have qk + qk−1− ε point/hyperplane colours (out
of qk − qk−1 or less).

Remark

If the second largest coclique has size at most
cqk2−k−1 ≤

[2k−1
k−1

]
/2, then ε ≤ 2qk−1.
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A bipartite graph

Define a bipartite graph in the following way:
Upper points N: k-spaces not coloured by the qk + qk−1 − ε
point/hyperplane colours.
|N| ≤ εcqk2−k−1.

Lower points U: k-spaces that are uniquely coloured

Edge: intersect in a (k − 1)-dim. subspace

Lemma

|U| ≥ 2

([
2k

k

]
− |N|

)
− (qk + qk−1 − ε)

[
2k − 1

k − 1

]
.

Since ε ≤ 2qk−1 and |N| ≤ εcqk2−k−1, we get that |U| ≈
[2k

k

]
.
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Point degrees, final contradiction

Lemma

The degree of a point in U is at least εqk−1.

Lemma

The degree of a point of N is at most
[k
1

]
(
[k+1

1

]
− 1)(≈ q2k−1).

FINAL CONTRADICTION

(qk2 − 2qk2−1)εqk−1 ≤ no. of edges ≤ εcqk2−k−1q . =⇒ ε = 0.
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Sketch of the proofs (about degrees)

1) (degrees in U) Let P denote the point-colours, H the
hyperplane-colours. Let π ∈ U coloured by p0 ∈ π. Then

(|P| − 1)qk−1 + |H|qk−1 + qk−1

[
k − 1

1

]
≥ qk−1(

[
k + 1

1

]
− 1).

LHS counts (upper bounds) no. of k-spaces coloured by P \ {p0}
or H, RHS counts total no. of k-spaces not through p0 meeting π
in a (k − 1)-space. =⇒ degree of π is at least εqk−1

2) (degrees in N) Let π ∈ N. Choose a (k − 1)-space inside, and a
(not coloured) k-space containing it:
(≤)
[ k
k−1

]
·
[2k−k+1

k−k+1

]
.
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THANK YOU

THANK YOU FOR YOUR ATTENTION
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