The Classification of $(42,6)_{8}$-Arcs

Anton Betten ${ }^{1}$, Eun-Ju Cheon², Seon Jeong Kim², Tatsuya Maruta ${ }^{3}$
${ }^{1}$ Colorado State University, U.S.A.
${ }^{2}$ Geongsang National University, South Korea
${ }^{3}$ Osaka Prefecture University, Japan

April 2010

(Some) Finite Geometry:

Let q be a prime power, $q=p^{h}$, with p prime.
A nondegenerate conic in $\operatorname{PG}(2, q)$
EXAMPLE:

$$
Y^{2}=X Z
$$

The $q+1$ points are parametrized as

- $\left(t^{2}, t, 1\right)\left(t \in \mathbb{F}_{q}\right) \quad$ together with
- $(1,0,0)$.

Properties of Conics

- A large automorphism group:

$$
\begin{aligned}
& \operatorname{P\Gamma L}(2, q) \text { embedded in } \operatorname{P\Gamma O}(3, q) \\
& {\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]_{i} \rightarrow\left[\begin{array}{ccc}
a^{2} & a c & c^{2} \\
2 a b & a d+b c & 2 c d \\
b^{2} & b d & d^{2}
\end{array}\right]_{i}}
\end{aligned}
$$

Order: $h(q+1) q(q-1)$

- Any line intersects in at most 2 points.

Arcs

Definition: $A \subseteq \operatorname{PG}(2, q)$ is $(n, s)_{q}$-arc if

- $|A|=n$,
- no $s+1$ points of A are collinear,
- some s points of A are collinear.

Equivalent Objects:

- $(n, s)_{q} \operatorname{arcs}$
- $[n, 3, n-s]_{q}$ linear codes (projective)
- $\left\{q^{2}+q+1-n, q+1-s ; 2, q\right\}$ minihyper (without multiplicities)

Arcs

EXAMPLES:

Conics are $(q+1,2)_{q}$-arcs (a.k.a. ovals)

If q is even, conics together with their nucleus are $(q+2,2)_{q}$-arcs (a.k.a. hyperovals)

Arcs

An $(n, s)_{q}$ arc is largest
if there is no $(n+1, s)_{q}$-arc.

Q: Given s and q, what is the largest n for which an $(n, s)_{q}$ arc exists?

A: It depends, but for

- $s=2$ and q odd, the answer is $q+1$
(i.e., ovals).
- $s=2$ and q even, the answer is $q+2$
(i.e., hyperovals).
- $s=6$ and $q=8$, the answer is 42 .

Arcs

Q: Can we classify all arcs?
A: Sometimes, but we first need to discuss projective equivalence.

Symmetry in $\operatorname{PG}(k-1, q)$

THEOREM: $\operatorname{Aut}(\operatorname{PG}(k-1, q))=\operatorname{P\Gamma L}(k, q)$

Q: What is $\mathrm{P}\ulcorner\mathrm{L}(k, q)$?

Symmetry in $\operatorname{PG}(k-1, q)$

$\operatorname{PGL}(k, q)$ is the group of linear automorphisms of $\operatorname{PG}(k-1, q)$.

$$
|\operatorname{PGL}(k, q)|=q^{k(k-1) / 2} \prod_{i=2}^{k}\left(q^{i}-1\right)
$$

EXAMPLE:

$$
|\operatorname{PGL}(2, q)|=q\left(q^{2}-1\right)=(q+1) q(q-1)
$$

Symmetry in $\operatorname{PG}(k-1, q)$

Semilinear maps:

Write $q=p^{h}$ with p prime

Let $\phi: x \mapsto x^{p}$ be the Frobenius automorphism of \mathbb{F}_{q}

$$
\left(x_{0}, \ldots, x_{k}\right)^{\phi}:=\left(x_{0}^{\phi}, \ldots, x_{k}^{\phi}\right)
$$

induces an automorphism of $\operatorname{PG}(k-1, q)$.

Symmetry in $\operatorname{PG}(k-1, q)$

A semilinear map of $\operatorname{PG}(k-1, q)$ is the map induced by

$$
\mathbf{x} \mapsto(\mathbf{x} A)^{\phi^{i}}
$$

where

$$
A \in \mathrm{GL}(k, q), \quad i \in \mathbb{Z}_{n} .
$$

Symmetry in $\operatorname{PG}(k-1, q)$

$\mathrm{P}\lceil\mathrm{L}(k, q)$ is the group of all semilinear automorphisms of $\operatorname{PG}(k-1, q)$.

Write A_{i} for the semilinear map induded by

$$
(A, i)
$$

Composition rule for semilinear maps:
$A_{i} \cdot B_{j}=C_{k} \quad$ where $C=A \cdot B^{\phi^{-i}}$, and $k=i+j \bmod h$.
EXAMPLE: $|\mathrm{P} \Gamma \mathrm{L}(2, q)|=h(q+1) q(q-1)$

Classification of Arcs: $s=2$

Segre
 For q odd, all ovals are conics.

For q even, not every hyperoval is of the form "conic + nucleus" (a.k.a. regular).

EXAMPLE: Lunelli/Sce when $q=16$.
Can be written as the symmetric difference of two cubics (Glynn).

Classification of Arcs: $s>2$

Q: Can we classify all $(42,6)_{8}$-arcs?

A: For $(n, s)_{q}=(42,6)_{8}$, one arc is due to Mason 1984.

For the complete classification, see below...

Observe that $\mathrm{P} \Gamma \mathrm{L}(3,8)$ is a group of order 49448448.

Notation

$$
(\mathcal{V}, \mathcal{B})=\mathrm{PG}(2,8)
$$

Let A be an $(42,6)_{8}$-arc.

$$
\begin{gathered}
B=\mathcal{V} \backslash A \\
(P)=\{I \in \mathcal{B} \mid P \in I\}
\end{gathered}
$$

the pencil of lines through the point P.

Notation

A line I is called i-line if $|A \cap I|=i$. So, $i \leq 6$.

\mathcal{L}_{i} the set of i-lines

$$
a_{i}=\left|\mathcal{L}_{i}\right|
$$

$\left(a_{0}, a_{1}, \ldots, a_{6}\right)$ the line type
Exponential notation: $i^{a_{i}}$

THEOREM
There are five $(42,6)_{8}$-arcs, with groups of order $42,18,72,63,2$. They are...

The constructions will show the complement of the arc.

Take a hyperoval in $\operatorname{PG}(2,8)$: group order 9•8•7.3
$\mathrm{N} \cdot$

Arc I (Mason arc): group order $7 \cdot 2 \cdot 3=42$

Arc II: group order $3 \cdot 6=18$

Arc III: group order $\frac{168 \cdot 3}{7}=72$

Arc IV: group order 63

Arc V: group order 2

Aut \mid	Arc	
18	I	
42	II	
72	III	
63	IV	
2	V	

Lemma 1
An $(n, s)_{q}$-arc satisfies

$$
\sum_{i=0}^{s} a_{i}=q^{2}+q+1, \sum_{i=1}^{s} i a_{i}=(q+1) n, \sum_{i=2}^{s}\binom{i}{2} a_{i}=\binom{n}{2},
$$

This leads to 330 cases of line types.

Lemma 2

$$
a_{1}=0
$$

This reduces the number of cases to 111 .

Point Types

For a point P, let

$$
c_{i}=\left|(P) \cap \mathcal{L}_{i}\right|
$$

The point type is $\left(c_{0}, \ldots, c_{6}\right)$, often written as $6^{c_{6}} \cdots 0^{c_{0}}$

Let \mathbf{p}_{i} be the point types for points in A.
Let \mathbf{q}_{i} be the point types for points in B.

Point Types

Lemma 3
The \mathbf{p}_{i} are determined by

$$
\sum_{i=2}^{6}(i-1) c_{i}=41, \quad \sum_{i=0}^{6} c_{i}=9
$$

Lemma 4
The \mathbf{q}_{i} are determined by

$$
\sum_{i=0}^{6}(9-i-1) c_{i}=30, \quad \sum_{i=0}^{6} c_{i}=9
$$

Point Types

There are $5 \mathbf{p}_{i}$ and $40 \mathbf{q}_{i}$
Observe: the only point type \mathbf{q}_{i} with at least two 0 -lines is $\mathbf{q}_{1}=6^{7}, 0^{2}$

Thus:

- No three 0 -lines are concurrent (the 0 -lines form an arc with $s=2$ in the dual plane).
- For $2 \leq w<6$, a w-line intersects a 0 -line in a point not on another 0-line

Q: How many points of type $\mathbf{p}_{i}, \mathbf{q}_{i}$ are there?
Define
$x_{i}=$ the number of points of type \mathbf{p}_{i}
$y_{i}=$ the number of points of type \mathbf{q}_{i}

Write $s_{i, j}$ for the c_{j} in points of type \mathbf{p}_{i}
Write $t_{i, j}$ for the c_{j} in points of type \mathbf{q}_{i}

The x_{i} and y_{i} satisfy the following equations:

Lemma 7

$$
\begin{gather*}
\sum_{i=1}^{5} x_{i}=42 \quad\left(F_{1}\right), \quad \sum_{i=1}^{40} y_{i}=31 \quad\left(F_{2}\right) \tag{2}\\
\sum_{i=1}^{5} x_{i} s_{i, j}=j a_{j} \quad\left(F_{1, j}\right), \quad \sum_{i=1}^{40} y_{i} t_{i, j}=(9-j) a_{j} \tag{2,j}\\
\sum_{i=1}^{5} x_{i}\binom{s_{i, j}}{2}+\sum_{i=1}^{40} y_{i}\binom{t_{i, j}}{2}=\binom{a_{j}}{2} \quad\left(J_{j}\right) \tag{j}\\
\sum_{i=1}^{5} x_{i} s_{i, j_{1}} s_{i, j_{2}}+\sum_{i=1}^{40} y_{i} t_{i, j_{1}} t_{i, j_{2}}=a_{j_{1}} a_{j_{2}} \quad\left(J_{j_{1}, j_{2}}\right)
\end{gather*}
$$

for $j, j_{1}, j_{2} \in\{0, \ldots, 6\}$ with $j_{1} \neq j_{2}$.

If Lemma 7 has no solution, that case can be ruled out.

This reduces the number of cases to 27 .

EXAMPLE: Case 72

Example: Case 72 is the following column tactical decomposition:

		\mathcal{L}_{6}	\mathcal{L}_{4}	\mathcal{L}_{2}	\mathcal{L}_{0}
	\downarrow	50	18	3	2
A	42	6	4	2	0
B	31	3	5	7	9

Lemma 3 and 4: We find 2 point types \mathbf{p}_{i} and 7 point types \mathbf{q}_{i}.

Lemma 7 amounts to solving the following system:

x_{1}	x_{2}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}		
8	7	0	0	0	0	0	0	0	$=300$	$F_{1,1}$
0	2	0	0	0	0	0	0	0	$=72$	$F_{2,1}$
1	0	0	0	0	0	0	0	0	$=6$	$F_{3,1}$
1	1	0	0	0	0	0	0	0	$=42$	F_{1}
0	0	7	6	6	5	5	4	3	$=150$	$F_{1,2}$
0	0	0	1	0	3	2	4	6	$=90$	$F_{2,2}$
0	0	0	1	3	0	2	1	0	$=21$	$F_{3,2}$
0	0	2	1	0	1	0	0	0	$=18$	$F_{4,2}$
0	0	1	1	1	1	1	1	1	$=31$	F_{2}
28	21	21	15	15	10	10	6	3	$=1225$	J_{1}
0	1	0	0	0	3	1	6	15	$=153$	J_{2}
0	0	0	0	3	0	1	0	0	$=3$	J_{3}
0	0	1	0	0	0	0	0	0	$=1$	J_{4}
0	14	0	6	0	15	10	16	18	$=900$	$J_{1,2}$
8	0	0	6	18	0	10	4	0	$=150$	$J_{1,3}$
0	0	14	6	0	5	0	0	0	$=100$	$J_{1,4}$
0	0	0	1	0	0	4	4	0	$=54$	$J_{2,3}$
0	0	0	1	0	3	0	0	0	$=36$	$J_{2,4}$
0	0	0	1	0	0	0	0	0	$=6$	$J_{3,4}$

The Parameters

We find two solutions. They correspond to the following two row-tactical refinements:

Case.72.1

	\mathcal{L}_{6}	\mathcal{L}_{4}	\mathcal{L}_{2}	\mathcal{L}_{0}
\rightarrow	50	18	3	2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
1	6	0	3	0
10	5	3	0	1
12	4	4	1	0
1	3	6	0	0

2-lines
concurrent

Case.72.2

	\mathcal{L}_{6}	\mathcal{L}_{4}	\mathcal{L}_{2}	\mathcal{L}_{0}
\rightarrow	50	18	3	2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
10	5	3	0	1
3	5	2	2	0
9	4	4	1	0
2	3	6	0	0

2-lines form a triangle

The Johnson bound for Tactical Decompositions

$(\mathfrak{V}, \mathfrak{B})$ a row-tactical decomposition

		B_{1}	B_{2}	\cdots	B_{n}
	\rightarrow	b_{1}	b_{2}	\cdots	b_{n}
V_{1}	v_{1}	r_{11}	r_{12}	\cdots	$r_{1 n}$
V_{2}	v_{2}	r_{21}	r_{22}	\cdots	$r_{2 n}$
\vdots	\vdots	\vdots			\vdots
V_{m}	v_{m}	$r_{m 1}$	$r_{m 2}$	\cdots	$r_{m n}$

Here, $\mathfrak{V}=\left(V_{1}, \ldots, V_{m}\right)$ and $\mathfrak{B}=\left(B_{1}, \ldots, B_{n}\right)$.

The Johnson bound for Tactical Decompositions

Lemma 8 (BB 2010)
Let $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq m$. Assume that

$$
\sum_{j=1}^{n}\left\{e_{j}\binom{f_{j}+1}{2}+\left(b_{j}-e_{j}\right)\binom{f_{j}}{2}\right\}>\binom{\sum_{u=1}^{s} v_{i u}}{2}
$$

where f_{j} and e_{j} are determined by

$$
\sum_{u=1}^{s} r_{i, j} v_{i_{u}}=f_{j} b_{j}+e_{j} \quad 0 \leq e_{j}<b_{j} .
$$

Then the decomposition scheme is not realizable.
This reduces the number of cases to 25 .

Case	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	Lem 7	Lem 8	Comment
15	52	0	12	0	9	0	0	2	2	
37	49	8	3	8	4	0	1	23	15	
41	49	7	6	5	5	0	1	11	11	
44	51	0	15	0	6	0	1	2	2	
59	48	9	3	11	0	0	2	2	0	ruled out
63	48	8	6	8	1	0	2	21	0	ruled out
64	47	11	3	9	1	0	2	16	12	
68	48	7	9	5	2	0	2	32	18	
69	47	10	6	6	2	0	2	1351	1060	
70	46	13	3	7	2	0	2	13	9	
72	50	0	18	0	3	0	2	2	2	Arc V
75	47	9	9	3	3	0	2	197	196	
76	46	12	6	4	3	0	2	2139	1338	
77	45	15	3	5	3	0	2	2	2	
80	46	11	9	1	4	0	2	62	53	
81	45	14	6	2	4	0	2	112	80	

Case	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	Lem 7	Lem 8	Comment
88	49	0	21	0	0	0	3	1	1	Arcs I \& II
91	46	9	12	3	0	0	3	8	1	
92	45	12	9	4	0	0	3	214	32	
93	44	15	6	5	0	0	3	188	11	
94	43	18	3	6	0	0	3	4	2	
95	42	21	0	7	0	0	3	1	1	Arc IV
97	45	11	12	1	1	0	3	33	3	
98	44	14	9	2	1	0	3	447	12	
99	43	17	6	3	1	0	3	77	8	
102	43	16	9	0	2	0	3	66	11	
108	39	24	6	0	0	0	4	1	1	Arc III

Case by Case

The remainder is a case-by-case analysis of these 25 line-types.

For this talk, we wish to look at a few cases only.

Recall that the 0-lines form an arc in the dual plane (i.e., no 3 concurrent)

Case 108 with $a_{0}=4$

The four 0 -lines form a quadrilateral with 6 intersection points.

Thus, it determines a 7th point Q, say, and this point completes a Fano plane $\operatorname{PG}(2,2)$.

One can show: the points on the quadrilateral together with Q form the complement of an arc.

This is Arc III with a stabilizer of order 72.

Arc III: group order $\frac{168 \cdot 3}{7}=72$

Cases 88-102 with $a_{0}=3$

The three 0-lines form a triangle.
The stabilizer of the triangle has order 882.
For the remaining 7 points X, we do a computer search.

We find that there are 133 possibilities for such sets X.

Orbit\|Length	properties of X	Aut \mid Arc				
1	49	all collinear	18	III		
2	49	$(7,2)$-arc	18			
3	21	$(7,2)$-arc	42	II		
4	14	$\operatorname{PG}(2,2)$	63	IV		

$(18=$ subgroup of index 4$)$

Case by Case

Search Algorithm - Two Parts:

Algebra:

Use symmetry to reduce the search

Combinatorics:

Use parameters to gain more information

A Classification Algorithm for $1 \leq a_{0} \leq 2$

Combinatorics:

1.) How do w-lines intersect 0 -lines?
2.) How do w-lines intersect themselves?

We restrict to $2 \leq w<6$.
1.) How do w-lines intersect 0 -lines? $(w=2)$

Case.72.1				
	\mathcal{L}_{6}	\mathcal{L}_{4}	\mathcal{L}_{2}	\mathcal{L}_{0}
\rightarrow	50	18	3	2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
1	6	0	3	0
10	5	3	0	1
12	4	4	1	0
1	3	6	0	0

Case.72.2

	\mathcal{L}_{6}	\mathcal{L}_{4}	\mathcal{L}_{2}	\mathcal{L}_{0}
\rightarrow	50	18	3	2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
10	5	3	0	1
3	5	2	2	0
9	4	4	1	0
2	3	6	0	0

2.) How do w-lines intersect themselves? $(w=2)$

\rightarrow			\mathcal{L}_{2} 3	\mathcal{L}_{0} 2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
1	6	0	3	0
10	5	3	0	1
12	4	4	1	0
1	3	6	0	0
		1^{6}		
$1^{12} 3^{1}$				

\rightarrow	$\left\lvert\, \begin{aligned} & \mathcal{L}_{6} \\ & 50 \end{aligned}\right.$		$\begin{array}{r} \mathcal{L}_{2} \\ 3 \end{array}$	\mathcal{L}_{0} 2
6	8	0	1	0
36	7	2	0	0
1	7	0	0	2
6	6	1	1	1
10	5	3	0	1
3	5	2	2	0
9	4	4	1	0
2	3	6	0	0
		1^{6}		
$1^{9} 2^{3}$				

Notation

$m_{P}(\mathcal{L})$ the multiplicity of the point P on the line set \mathcal{L}.
P is i-point w.r.t \mathcal{L} if $m_{P}(\mathcal{L})=i$.
$M_{i}(X ; \mathcal{L})$ the set of i-points in the subset $X \subseteq \mathcal{V}$.

$$
m_{i}:=m_{i}(X ; \mathcal{L})=\left|M_{i}(X ; \mathcal{L})\right|
$$

Special cases:
$M_{i}(\mathcal{L})=M_{i}(\mathcal{V} ; \mathcal{L})$ and $m_{i}(\mathcal{L})=m_{i}(\mathcal{V} ; \mathcal{L})$

Notation

A Partition μ of the integer n is an expression

$$
n=n_{1}+n_{2}+\cdots+n_{k}
$$

for some k (with $n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1$
Let m_{i} or $\mu(i)$ be the number of n_{j} with $n_{j}=i$.
Exponential Notation: write $i^{m_{i}}$

$$
|\mu|=\sum_{i} i \mu(i) \quad \text { and } \quad\|\mu\|=\sum_{i} \mu(i) .
$$

Also, for partitions μ, ν, define a new partition $\mu+\nu$ by putting

$$
(\mu+\nu)(i)=\mu(i)+\nu(i) \quad \text { for all } i
$$

Since any two lines intersect, we have:
Lemma
For $i \neq j,\left|\mu_{\left[\mathcal{L}_{i}\right] ; \mathcal{L}_{j}}\right|=a_{i} a_{j}$.

Here,

$$
[\mathcal{L}]=\bigcup_{l \in \mathcal{L}} I
$$

the set of points covered by the set of lines \mathcal{L}.

The Search Algorithm

Use the parameters

$$
\begin{array}{ll}
\text { 1. } \mu_{\left[\mathcal{C}_{0}\right] ; \mathcal{C}_{w}} \quad \text { (i.e., } 1^{6} \text {) } \\
\text { 2. } \mu_{A ; \mathcal{C}_{w}}+\mu_{B^{*} ; \mathcal{L}_{w}} & \text { (i.e., } \left.1^{6}+1^{12} 3^{1}=1^{18} 3^{1}\right)
\end{array}
$$

$$
\text { Here, } B^{*}=B \backslash\left(\left[\mathcal{L}_{0}\right] \cap\left[\mathcal{L}_{w}\right]\right) .
$$

Find and classify all realizations.

The Search Algorithm

Step 1:

Up to $\operatorname{P\Gamma L}(3, q)$-equivalence,
choose a_{0} lines \mathcal{L}_{0},
compute the stabilizer H .

The Search Algorithm

Step 2:

Up to H-equivalence, search for sets S with

- $S \subseteq\left[\mathcal{L}_{0}\right] \backslash M_{2}\left(\mathcal{L}_{0}\right)$
- $|S|=\left\|\mu_{\left[\mathcal{L}_{0}\right] \mathcal{L}_{w}}\right\|$
- $|S \cap I| \leq a_{w}$ for all $I \in \mathcal{L}_{0}$

Compute K, the stabilizer of the set S in the group H.

The Search Algorithm

Step 3:

Up to K-equivalence, compute possibilities for a set of lines \mathcal{L} such that:

- $[\mathcal{L}] \cap\left[\mathcal{L}_{0}\right]=S$
- $\sum_{P \in \cap \cap S} m_{P}(\mathcal{L})=a_{w}$ for all $I \in \mathcal{L}_{0}$.
- $\mu_{\mathcal{V} \backslash S ; \mathcal{L}}=\mu_{A ; \mathcal{L}_{w}}+\mu_{B^{*} ; \mathcal{L}_{w}}$.

$$
\text { Put } \mathcal{L}_{w}:=\mathcal{L}
$$

The Search Algorithm

Step 4:

Identify more points of either A or B by their intersection number.

For instance, if $\mu_{A_{i} \mathcal{L}_{W}}(i)>0$ and $\mu_{B^{*} ; \mathcal{C}_{w}}(i)=0$
then all i-points in $\mathcal{V} \backslash S$ go into A.

The Search Algorithm

Step 5:

Perform a backtrack search on the remaining points (details omitted).

Thus, A and B are determined

Check the line type

Conclusion

- Finite geometry:
- Conics,
- Arcs, ovals, hyperovals
- Combinatorial tools:
- Tactical decompositions, diophantine equations
- Parameters (line type, point type, multiplicities, intersection numbers)
- Algebraic tools:
- Symmetry groups
- Algorithmic tools:
- Computing orbits of finite groups
- Theoretical tools:
- Geometric reasoning.

References

- S. Johnson 1962: A new upper bound for error-correcting codes. IRE Trans., IT-8:203-207, 1962.
- J.R.M. Mason 1984: A class of
$\left(\left(p^{n}-p^{m}\right)\left(p^{n}-1\right), p^{n}-p^{m}\right)$-arcs in PG(2, $\left.p^{n}\right)$. Geom. Dedicata, 15(4):355-361, 1984.
- A. Betten and D. Betten 2010: There is no Drake/Larson linear space on 30 points. Journal of Combinatorial Designs 18:48-70, 2010.

