Abstract

 Arcs in Projective Geometries over GF (4) and

 Arcs in Projective Geometries over GF (4) and Quaternary Linear Codes

Assia Rousseva
Faculty of Mathematics and Informatics
Sofia University
5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Ivan Landjev
New Bulgarian University
21 Montevideo str., 1618 Sofia, Bulgaria

The problem of finding the shortest length $n_{q}(k, d)$ of a q-ary linear $[n, k, d]$ code with given dimension k and minimum distance d is a variant of the main coding theory problem. It has been studied extesively in the last thirty years. The problem has a clear geometric relevance since the existence of a linear $[n, k, d]_{q^{-}}$ code is equivalent to the existence of a $(n, n-d)$-arc in $\operatorname{PG}(k-1, q)$. It is solved completely, i.e. for all values of d, in the following cases: $q=2, k \leq 8$, $q=3, k \leq 5, q=4, k \leq 4$, and $q=5, k \leq 3$.

In this talk, we give a characterization of some arcs in $\mathrm{PG}(3,4)$. Their structure is used to rule out the existence of certain arcs in the geometry $\operatorname{PG}(4,4)$. This in turn violates several Griesmer codes with $k=5, q=4$ and determines the exact values $n_{4}(5, d)$ for the corresponding d 's. Finally, we survey the the state-of-the-art in the problem of finding the exact value of $n_{4}(5, d)$.

