Abstract

Some optimal codes related to graphs invariant under the alternating group A_8

Bernardo Rodrigues

School of Mathematical Sciences University of KwaZulu-Natal Durban 4041 South Africa

The simple alternating group A_8 , acts as a primitive rank-3 group of degree 35 on the set \mathcal{P} of lines of $V_4(2)$ with point stabilizer isomorphic to $2^4: (S_3 \times S_3)$ with orbits of length 1, 16 and 18 respectively. Consequently this action defines strongly regular graphs Γ with parameters (35, 16, 6, 8) and its complement $\overline{\Gamma}$ with parameters (35, 18, 9, 9). The binary code of Γ is a two-weight code and thus using the codewords of minimum weight in the code we obtain a strongly regular graph with parameters (64, 35, 18, 20) whose complement is a (64, 28, 12, 12). The latter graph is a 2-(64, 28, 12) design with the symmetric difference property, while $\overline{\Gamma}$ is as a symmetric 2-(35, 18, 9) design. Further we construct a unique 2-(35, 17, 8) Hadamard design as a complement of $\overline{\Gamma}$ having A_8 as a non-abelian socle and acting rank-3 on points and blocks. This design is extendable to a unique 3-(36, 18, 8) design invariant under A_8 . Taking the row span over \mathbb{F}_2 and \mathbb{F}_3 of the adjacency matrices of the graphs or incidence matrices of the designs we construct binary (resp. ternary) self-orthogonal codes invariant under A_8 . We establish some properties of the codes and the nature of some classes of codewords. Some of the codes are optimal or near optimal for the given length and dimension.