Abstract

 Resolvable Steiner 3-Designs

 Resolvable Steiner 3-Designs}

Reinhard Laue
Universität Bayreuth

Resolvable Steiner $t-(v, k, 1)$ designs with $t>2$ had been known to exist for a few values of k only, that is $5-(12,6,1), 5-(24,8,1), 5-(48,6,1)$, and $3-(v, 4,1)$ for $v \equiv 4,8 \bmod 12[1,2]$. We show that for any prime power q, such that $q+1$ is not a power of 2 , and any positive integer n, there exists a resolvable $3-\left(q^{3^{n}}+1, q+1,1\right)$ design.

References

[1] Alan Hartman, The existence of resolvable Steiner quadruple systems, J. Comb. Theory, Ser. A 44 (1987), 182-206.
[2] L. Ji, L. Zhu, Resolvable Steiner quadruple systems for the last 23 orders, SIAM J. Discret. Math. 19 (2005), 420-430.

