A symmetric $(v,k,\lambda)$-design is a finite incidence structure of $v$ elements and $v$ blocks such that each block contains $k$ elements, each element occurs on $k$ blocks, and (*) 2 different elements occur in a common block exactly $\lambda$ times.

(1) Without condition (*) we obtain a tactical configuration TC$(v,k)$. (2) For even designs ED$(v,k)$ condition (*) is replaced by (**) 2 different elements occur in a common block an even number of times. (3) For symmetric configurations $v_k$ condition (*) is replaced by (***) 2 different elements occur in a common block at most once. (4) For symmetric spatial configurations $(v_k)_2$ (*) is replaced by (****) 2 different elements occur in a common block at least twice, and 2 different blocks intersect in at most 2 elements.

An orbital matrix OM$(v,k,x;\lambda)$ is a matrix $A$ of size $v$ with non-negative integer entries and row and column sum $k$ such that $AA^t = (k + x - \lambda)I_v + \lambda J_v$.

A weighing matrix $W(n,w)$ of weight $w \neq 0$ and order $n$ is a square matrix of size $n$ with entries from $\{-1, 0, +1\}$ satisfying $WW^t = wI$.

This paper will discuss some of these discrete structures and investigate their properties.