Abstract
 On some generalizations of symmetric designs

Harald Gropp
Hans-Sachs-Str. 6, D-65189 Wiesbaden, Germany

A symmetric ($\mathrm{v}, \mathrm{k}, \lambda$)-design is a finite incidence structure of v elements and v blocks such that each block contains k elements, ech elements occurs on k blocks, and (*) 2 different elements occur in a common block exactly λ times.
(1) Without condition (*) we obtain a tactical configuration $\mathrm{TC}(\mathrm{v}, \mathrm{k})$. (2) For even designs $\operatorname{ED}(\mathrm{v}, \mathrm{k})$ condition $\left({ }^{*}\right)$ is replaced by $\left({ }^{* *}\right) 2$ different elements occur in a common block an even number of times. (3) For symmetric configurations v_{k} condition $(*)$ is replaced by $\left({ }^{(* *)} 2\right.$ different elements occur in a common block at most once. (4) For symmetric spatial configurations $\left(v_{k}\right)_{2}\left({ }^{*}\right)$ is replaced by $(* * * *) 2$ different elements occur in a common block at least twice, and 2 different blocks intersect in at most 2 elements.

An orbital matrix $\mathrm{OM}(\mathrm{v}, \mathrm{k}, \mathrm{x} ; \lambda)$ is a matrix A of size v with non-negative integer entries and row and column sum k such that $A A^{t}=(k+x-\lambda) I_{v}+\lambda J_{v}$.

A weighing matrix $\mathrm{W}(\mathrm{n}, \mathrm{w})$ of weight $w \neq 0$ and order n is a square matrix of size n with entries from $\{-1,0,+1\}$ satisfying $W W^{t}=w I$.

This paper will discuss some of these discrete structures and investigate their properties.

