Abstract

On maximal partial spreads of the hermitian variety $H(3,q^2)$

Jan De Beule

Ghent University Pure Mathematics and Computer Algebra Krijgslaan 281, S22 B - 9000 Gent Belgium

We consider the hermitian variety $H(3, q^2)$ as the geometry consisting of all totally isotropic subspaces with respect to a given non-singular hermitian form on the projective space $PG(3, q^2)$. It consists of points and lines, and it is one of the finite classical generalized quadrangles.

A spread is a set \mathcal{L} of lines of $H(3, q^2)$ partitioning the point set of $H(3, q^2)$. It is known for a long time that no spreads of $H(3, q^2)$ exist. A partial spread is a set \mathcal{L} of lines of $H(3, q^2)$ such that every point of $H(3, q^2)$ is contained in at most one element of \mathcal{L} . A partial spread is called *maximal* if it is not a proper subset of any (partial) spread. The natural question is how large a maximal partial spread of $H(3, q^2)$ can be.

We discuss the currently best known upper bound on the size of maximal partial spreads of $H(3, q^2)$. This upper bound is sharp for q = 2 and q = 3, but probably not for all q > 3. Computer searches confirm this for q = 4 and q = 5. We discuss known examples of *large* maximal partial spreads of $H(3, q^2)$.