Abstract

On maximal partial spreads of the hermitian variety \(H(3, q^2) \)

Jan De Beule

Ghent University
Pure Mathematics and Computer Algebra
Krijgslaan 281, S22
B - 9000 Gent Belgium

We consider the hermitian variety \(H(3, q^2) \) as the geometry consisting of all totally isotropic subspaces with respect to a given non-singular hermitian form on the projective space \(\text{PG}(3, q^2) \). It consists of points and lines, and it is one of the finite classical generalized quadrangles.

A spread is a set \(L \) of lines of \(H(3, q^2) \) partitioning the point set of \(H(3, q^2) \). It is known for a long time that no spreads of \(H(3, q^2) \) exist. A partial spread is a set \(L \) of lines of \(H(3, q^2) \) such that every point of \(H(3, q^2) \) is contained in at most one element of \(L \). A partial spread is called maximal if it is not a proper subset of any (partial) spread. The natural question is how large a maximal partial spread of \(H(3, q^2) \) can be.

We discuss the currently best known upper bound on the size of maximal partial spreads of \(H(3, q^2) \). This upper bound is sharp for \(q = 2 \) and \(q = 3 \), but probably not for all \(q > 3 \). Computer searches confirm this for \(q = 4 \) and \(q = 5 \). We discuss known examples of large maximal partial spreads of \(H(3, q^2) \).