Abstract

A Hilton-Milnor theorem for vector spaces, and the chromatic number of $q\text{-}\mathbf{K}\mathbf{n}\mathbf{e}\mathbf{s}\mathbf{r}$ graphs

Aart Blokhuis

Eindhoven university of Technology

We show that if $q \geq 3$, $k \geq 3$ and $n \geq 2k + 1$, then any intersecting family \mathcal{F} of k-subspaces of an n-dimensional vector space over GF(q) with $\bigcap_{F \in \mathcal{F}} F = \{\underline{0}\}$ has size at most $\binom{n-1}{k-1} - q^{k(k-1)} \binom{n-k-1}{k-1} + q^k$. This bound is sharp as shown by Hilton-Milner-type families. As an application of this result, we determine the chromatic number of q-Kneser graphs.

(joint work with A.E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós and T. Szőnyi)