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An (n, s)q arc in PG(2, q) is a set of n points such that some s, but no s + 1 of
them are collinear. It gives rise to a linear code with parameters [n, 3, n− s]q . Let
ms(2, q) denote the largest value of n for which an (n, s)-arc exists in PG(2, q).
An (n, s)q arc is largest if n = ms(2, q).

We present the classification of (42, 6)8 arcs. These arcs are largest. We use
methods from the theory of linear spaces and symmetric designs, the constructive
theory of finite group actions, as well as geometric reasoning to determine all such
arcs up to projective equivalence. There are five such arcs. One of them is a Mason
arc [1].

The situation when q = 9 has been explored by the fourth author together with
Kikui and Yoshida [2]. In this case, there is only one largest arc.
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