Abstract
 The Classification of $(42,6)_{8}$ Arcs

```
Anton Betten \({ }^{1)}\), Eun-Ju Cheon \({ }^{2)}\), Seon Jeong Kim \({ }^{2)}\), Tatsuya Maruta \({ }^{3)}\)
                    \({ }^{1)}\) Colorado State University
                    Department of Mathematics
                        Fort Collins, CO 80526
                    U.S.A.
            betten@math.colostate.edu
            \({ }^{2)}\) Gyeongsang National University
        Department of Mathematics and RINS
                    Jinju, 660-701
                    South Korea
    skim@gnu.ac.kr, enju1000@naver.com
            \({ }^{3)}\) Tatsuya Maruta
        Department of Mathematics and Information Sciences
        Osaka Prefecture University
        Sakai, Osaka 599-8531
                    Japan
        maruta@mi.s.osakafu-u.ac.jp
```

An $(n, s)_{q}$ arc in $\mathrm{PG}(2, q)$ is a set of n points such that some s, but no $s+1$ of them are collinear. It gives rise to a linear code with parameters $[n, 3, n-s]_{q}$. Let $m_{s}(2, q)$ denote the largest value of n for which an (n, s)-arc exists in $\operatorname{PG}(2, q)$. An $(n, s)_{q}$ arc is largest if $n=m_{s}(2, q)$.

We present the classification of $(42,6)_{8}$ arcs. These arcs are largest. We use methods from the theory of linear spaces and symmetric designs, the constructive theory of finite group actions, as well as geometric reasoning to determine all such arcs up to projective equivalence. There are five such arcs. One of them is a Mason arc [1].

The situation when $q=9$ has been explored by the fourth author together with Kikui and Yoshida [2]. In this case, there is only one largest arc.

References

[1] J.R.M. Mason. A Class of $\left(\left(p^{n}-p^{m}\right)\left(p^{n}-1\right), p^{n}-p^{m}\right)$ - Arcs in $\operatorname{PG}\left(2, p^{n}\right)$. Geometriae Dedicata, 15 (1984) 355-361.
[2] Tatsuya Maruta, Ayako Kikui and Yuri Yoshida. On The Uniqueness of (48, 6)-Arcs in PG(2, 9). Advances in Mathematics of Communications, 3:1 (2009) 29-34.

