
SYMMETRICA, AN OBJECT ORIENTED COMPUTER ALGEBRA SYSTEMFOR REPRESENTATIONS, COMBINATORICS AND APPLICATIONSOF SYMMETRIC GROUPSADALBERT KERBER AND AXEL KOHNERTDepartment of Mathematics, University of Bayreuth,D-95440 Bayreuth, GermanyABSTRACTThis is a brief review of some of the methods and topics of SYMMETRICA, a com-puter algebra package devoted to the representations theory, the combinatorics, theinvariant theory and the applications of symmetric groups and of related classes ofgroups, for example, alternating groups general linear groups and wreath productsof symmetric groups.1. The Design of SYMMETRICAThe basic philosophy of SYMMETRICA was that it should run on any computerwith a C-compiler. It was designed by the second author as a collection of C-callablefunctions in an object oriented way 3, in order to avoid the introduction of a spe-cial language on top of the program system which would have been a contradictionto that basic philosophy. Many people contributed to it, in particular many resultsobtained by students in the course of writing their diploma theses or doctoral thesesunder the supervision of the �rst author were incorporated. Remarkable contribu-tions are due to people from Paris (A. Lascoux and collaborators), from Aberystwyth(T. McDonough), from Graz (H. Fripertinger) and from Tel-Aviv (M. Muzychuk).SYMMETRICA is still in progress, at present the main emphasize lies on projectivematrix representations of symmetric groups, on �nite group actions, and on the con-structions of discrete structures. SYMMETRICA is public domain, it can be fetched,via anonymous ftp, frombtm2x7.mat.uni-bayreuth.de:dist/SYM.tar.ZAfter uncompressing and unpacking you �nd in the subdirectory USER (seeUSER.tex) a LaTEX-�le of the manual and many example �les. You may read in-formation on SYMMETRICA using World Wide Web athttp://btm2xd.mat.uni-bayreuth.de/axel/symmetrica.html



1.1. Object OrientationThere are many objects that are already de�ned in SYMMETRICA and, of course,you may introduce your own additional objects, as it is described in the manual. Theadvantage of objects is that you may writemult(a; b; c)and the program itself looks, which kind of objects are called a and b, if they can bemultiplied and how that has to be done. It then does this multiplication, and thedesired result you will �nd under c:1.2. The File test:cThe user of SYMMETRICA usually works with a �le called test:c where he writeshis own program. He gets it compiled by the command make; and then it can berun. Here is an example:#include"def:h"#include"macro:h"main()fOP a; b;anfang();a = callocobject();b = callocobject();scan(INTEGER; a); fakul(a; b); println(b);freeall(a); freeall(b);ende();gThese lines show that �rst of all objects a and b are introduced, then space is reservedfor them, and | after the main linescan(INTEGER; a); fakul(a; b); println(b);(which means \read the integer a from the monitor, evaluate factorial a, and print itout") | the space reserved for a and b is set free.In the case when you want to evaluate the character table of Sn, say, you needonly to replace fakul(a; b) by chartafel(a; b): You see that it is relatively easy to doeasy things with SYMMETRICA . We admit that this is no wonder.1.3. The Main Topics of SYMMETRICAHere are some of the topics covered by SYMMETRICA :� Ordinary irreducible and Brauer characters as well as decomposition numbersof symmetric groups,



� ordinary irreducible characters of alternating groups,� ordinary irreducible characters of wreath products of symmetric groups,� ordinary and modular irreducible matrix representations of symmetric groups,� ordinary irreducible polynomial representations of general linear groups GLm(C);� ordinary irreducible projective representations of symmetric groups,� multivariate polynomials and in particular Schubert polynomials, also zonalpolynomials,� algebra of symmetric functions, including plethysm,� Schur polynomials as well as several other series of symmetric polynomials to-gether with base change matrices,� zonal polynomials and Jack symmetric functions,� cycle indicator polynomials for combinatorial enumeration,� �nite �eld arithmetic,� the ordinary group algebra of the symmetric groups, including manipulation oftableaux.Using these structures and appropriate procedures, you can evaluate irreducible char-acters and decompose reducible ones. You can do combinatorial enumeration to someextent, and you can also apply symmetry adapted bases by an application of irre-ducible matrix representations, which can be evaluated explicitly. For these proce-dures you can use� integer arithmetic, including long integers which are used automatically and ifnecessary,� cyclotomic �elds, which are necessary, for example, if you want to evaluatecharacters or matrix representations of alternating groups.2. Symmetry adapted basesOne of the most interesting applications of representation theory is the applicationof matrix representations to the evaluation of symmetry adapted bases, which meansthe decomposition of a vector space according to the symmetry of a given symmetricoperator 2. Here is a brief description what can be done by SYMMETRICA in thiscontext.



2.1. Matrix representationsSYMMETRICA can provide the orthogonal form of representing matrices forthe ordinary irreducible matrix representations of symmetric groups, and also theseminormal form via odg(); sdg()as well as three versions of the rational integral form:bdg(); ndg(); specht dg()The �rst one is the one described in H. Boerner's book, �rst edition, the second oneis described in the book by D. E. Rutherford, in Boerner'st book, second edition,as well as in the book by G. D. James and A. Kerber 1. The third form is due toW. Specht, and it has the advantage that it allows to evaluate a matrix representationcorresponding to a skew diagram. Here is a suitable program:scan(PARTITION; part);scan(PERMUTATION; perm);bdg(part; perm;D);tex(D);sdg(part; perm;D);tex(D);odg(part; perm;D);tex(D);specht dg(part; perm;D);tex(D);If you input the partition 2 3 (SYMMETRICA uses the French notation, i.e. apartition is coded as increasing sequence) and the permutation (in list notation)[23451], say, then you will receive an output which you can easily transform in aTEX-readible �le of the following form which shows you the corresponding matrices:�1 �1 1 1 0�1 0 0 0 10 �1 0 0 0�1 0 0 1 00 �1 0 1 01=4 �3=8 3=8 �9=16 0�1=2 1= � 4 �3=4 3= � 8 0�1=2 �1=4 1=4 1=8 �2=31 1= � 6 1=� 2 1=12 4= � 90 1 0 1= � 2 1= � 31=4 �1=4p3 1=4p3 �3=4 0�1=4p3 1= � 4 �3=4 1= � 4p3 0�1=4p3 �1=4 1=4 1=12p3 �1=3p63=4 1=� 12p3 1= � 4p3 1=12 1= � 3p20 1=3p6 0 1= � 3p2 1= � 3



0 �1 0 0 00 0 �1 0 01 0 �1 �1 10 0 �1 0 10 1 �1 �1 1There are also routines for the evaluation of the ordinary irreducible polynomialrepresentations of general linear groups GLm(C) :glmndg()uses symmetry adapted bases in order to decompose the tensor product 
n(Cm) asGLm(C)-module. The output is a vector of polynomial matrices corresponding tothe irreducible constituents (which means the ordinary irreducible polynomial matrixrepresentations of GLm associated with the partitions of n with at most m parts).Here you can use odg (if you call 0L, see the �rst line in the following program) oreither bdg() (the second line, calling 1L) for the representations of symmetric groups,and, as far as it has been tested with bdg(), the polymials in the representing matricesturned out to have integral coe�cients. Here is the main part of the program:scan(INTEGER;m);scan(INTEGER;n);glmndg(m;n;M; 0L);println(M);for(i = 0L; i < S V LI(M);+ + i)glm homtest(m;S V I(M; i));glmndg(m;n;M; 1L);println(M);for(i = 0L; i < S V LI(M);+ + i)glm homtest(m;S V I(M; i));(please note that it contains a test for homomorphism property). In case you enter2 for m as well as for n, you will obtain an output which needs some explanations.Here are the �rst few lines of the output:D = 3 � 1(D1) + 1 � 1(D2)[[1[2 :]: 1[1 : 1 :]: 1[0 : 2 :]:][2...



The �rst row of this output indicates that the tensor square 
2C2 decomposes(as S2{left module) into three times the representation D1 of S2 (which correspondsto the �rst partition of 2 and therefore is equal to the identity representation, aswe are numbering partitions in the reverse lexicographical way) and the (alternating)representation D2 with multiplicity 1. In the second row of the output we start givingthe representing matrix for GL2 row by row. The �rst bracket is the bracket of thematrix, the second bracket indicates that here the �rst row starts. The �rst entry 1 isthe coe�cient of the �rst monomial in the �rst entry of the representing matrix, andso on. The �rst monomial is indicated by [2 :] which says that only indeterminates ofthe form x1;k occur, and just the �rst one of them, which is x11, and that its exponentis 2. The end of the �rst row is indicated by :]: Hence the upper left hand corner ofthe representing matrix is as follows:0B@ 1 � x211 1 � x11x12 1 � x2122 � � � � � � � � �� � � 1CAA more general monomial, say x12x23 is indicated in this method by1[[0 : 1 : 0 :][0 : 0 : 1 :] :]Another routine, namely glpdg()gives, for a partition of n with at most m parts, the corresponding irreducible poly-nomial representation of GLm(C): It should be noted, that this last routine uses theorthogonal form of the representations of the symmetric group. Moreover we shouldmention that in this case at present no homomorphism test can be applied. (Thehomomorphism test, which is the routine glm homtest(), as you saw already, runsas follows: Two matrices are generated, the entries of which are randomly generatedintegers between -5 and +5, and it is checked if the product of their images is theimage of their product.)There is also a way of getting the output in LaTEX{readable form (but up to now itworks only for the representations of general linear groups). Here is a correspondingtest program: ...glmndg(m;n;M; 1L);println(M);for(i = 0L; i < S V LI(M);+ + i)latex glm dar(S V I(M; i));...In the case when you enter 2 for m and for n, then the LaTEX{readable part of the



output is, after processing it with LaTEX:264 x2112x11x21x221x11x12x12x21 + x11x22x21x22x2122x12x22x222 375h �x12x21 + x11x22 iYou see that latex glm dar() gives each column of the representing matrix in a sep-arate array.2.2. Symmetry adaptationThe method used for the evaluation of the irreducible polynomial representationsof general linear groups is that of symmetry adapted bases. This method is of highinterest for all kinds of applications of symmetry in mathematics and sciences. Let usmention the particular case when a given matrix M over C has a certain symmetry,say, MD(g) = D(g)M;for each element g of a �nite group G, and a given (possibly reducible) representationD of G over C: Then we can �nd a basis such that by transformation M decomposesinto AMA�1 = 0BBBBBBBBBBBBB@ M1 . . . M1 . . . Mr . . . Mr 1CCCCCCCCCCCCCAHere is a program that does this job:sab input(S; SMat;M);group gen(S; SMat;D;Di);sab(Di;D;B;M;mcp);println(mcp);println(M);println(B);



You see that you need to input S (a set of generating elements of the symmetrygroup), SMat (the set of irreducible matrices that represent the generators, for eachirreducible representation contained in the representation of the symmetry group),and M , the operator that you want to decompose. Here is an example, which wedescribe along the input �le:input �le comment not in input �le2 2 Generators4 generator is a permutation of S42 1 3 4 the generator in list notation4 generator is a permutation of S42 3 4 1 the generator in list notation5 number of irreps of S41 1 1 size of reresenting matrix, with integer (=1) entries1 the value of the single entry1 1 1 size and kind of entries for the second generator1 the value of the single entry3 3 1 size of the second irrep1 0 -1 entries0 1 -1 entries0 0 -1 entries3 3 1 size of the second irrep for the second generator-1 1 0 entries-1 0 1 entries-1 0 0 entries2 2 1 third irrep1 -1 entries0 -1 entries2 2 1 third irrep on the second generator-1 0 entries-1 1 entries3 3 1 fourth irrep1 -1 1 entries0 -1 0 entries0 0 -1 entries3 3 1 fourth irrep on the second generator1 -1 1 entries1 0 0 entries0 1 0 entries1 1 1 size of last irrep-1 single ntry1 1 1 size of last irrep-1 single entry4 4 1 size of the operator to be decomposed0 1 1 1 entries of the operator1 0 1 1 entries of the operator1 1 0 1 entries of the operator1 1 1 0 entries of the operatorThe �rst line of this input �le says that there is a vector of length 2 to comewhich contains the generators. These generators are given as permutations (notethat at present the symmetry adapted bases can be evaluated only in the case whenthe symmetry group is acting as a permutation group on the basis of the space inquestion). Therefore the 4 in the second line means that the following entry of thevector of generators is a vector of length 4, namely the list of the permutation ofthe �rst generator of the symmetric group S4 in the present case. You see that thegenerators used are the transposition (12) and the full cycle (1234). After that the5 announces that we enter for each of the 5 irreducible representations of S4 thematrices representing the generators already given. The following row 1 1 1 meansthat the matrix has 1 row, 1 column, and the entries are of type 1 (=INTEGER). Itshould be mentioned that in fact we do not need to do this for each of the 5 irreduciblerepresentations, since we know already from representation theory that in the presentcase it is only the identity representation and the representation corresponding to thepartition 1 3 which occur as irreducible constituents. Therefore only the �rst tworepresentations need to be entered. The �ve last rows contain the 4{rowed matrix ofthe operator which we want to decompose.



If you want to check this example, then please put this input into a �le input, say,and enter (after having the test program compiled)a:out < input > outputYou will then �nd at the end of the �le output the following lines:[1,3][[3:],[-1:]][6:2:2:2:][6:2:2:-6:][6:2:-6:2:][6:-6:2:2:]The �rst of these lines says that the permutation representation of S4 decomposesinto two irreducible representations D1 and D2 (according to the numbering in theinput �le), that their degrees are 1 and 3, respectively, and so the transformed operatordecomposes into 4 blocks, three of which are equal. Thus the �rst row [1; 3] shows themultiplicities of the blocks in the transformed operator. Note that, by theory, thesemultiplicities are equal to the dimensions of the irreducibles! Finally the blocks aregiven, each of them just once. Therefore, in our case, the transformed operator looksas follows: 0BBB@ 3 0 0 00 �1 0 00 0 �1 00 0 0 �1 1CCCAThe �nal 4-rowed matrix contains the elements of the symmetry adapted basis in itsrows.3. References1. G.D. James and A. Kerber, The Representation Theory of the SymmetricGroup (Reading Massachusetts, 1981)2. A. Kerber, Algebraic Combinatorics via �nite group actions (BI VerlagMannheim, 1991)3. A. Kerber, A. Kohnert and A. Lascoux, SYMMETRICA, an object orientedcomputer-algebra system for the symmetric group 14, 1992, Journal of Sym-bolic Computation, p. 195-203


