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ABSTRACT

This is a brief review of some of the methods and topics of SYMMETRICA | a com-
puter algebra package devoted to the representations theory, the combinatorics, the
invariant theory and the applications of symmetric groups and of related classes of
groups, for example, alternating groups general linear groups and wreath products
of symmetric groups.

1. The Design of SYMMETRICA

The basic philosophy of SYMMETRICA was that it should run on any computer
with a C-compiler. It was designed by the second author as a collection of C-callable
functions in an object oriented way 2, in order to avoid the introduction of a spe-
cial language on top of the program system which would have been a contradiction
to that basic philosophy. Many people contributed to it, in particular many results
obtained by students in the course of writing their diploma theses or doctoral theses
under the supervision of the first author were incorporated. Remarkable contribu-
tions are due to people from Paris (A. Lascoux and collaborators), from Aberystwyth
(T. McDonough), from Graz (H. Fripertinger) and from Tel-Aviv (M. Muzychuk).
SYMMETRICA is still in progress, at present the main emphasize lies on projective
matrix representations of symmetric groups, on finite group actions, and on the con-
structions of discrete structures. SYMMETRICA is public domain, it can be fetched,
via anonymous ftp, from

btm2x7.mat.uni-bayreuth.de:dist/SYM.tar.Z

After uncompressing and unpacking you find in the subdirectory USER (see
USER.tex) a INTpX-file of the manual and many example files. You may read in-
formation on SYMMETRICA using World Wide Web at

http://btm2xd.mat.uni-bayreuth.de/axel /symmetrica.html



1.1. Object Orientation

There are many objects that are already defined in SYMMETRICA and, of course,
you may introduce your own additional objects, as it is described in the manual. The
advantage of objects is that you may write

mult(a,b, c)

and the program itself looks, which kind of objects are called a and b, if they can be
multiplied and how that has to be done. It then does this multiplication, and the
desired result you will find under c.

1.2. The File test.c

The user of SYMMETRICA usually works with a file called test.c where he writes
his own program. He gets it compiled by the command make, and then it can be
run. Here is an example:

#Hainclude”de f.h”
#include”macro.h”
main()

{

OP a,b;

anfang();

a = callocobject();

b = callocobject();
scan(INTEGER, a); fakul(a,b); printin(b);
freeall(a); freeall(b);
ende();

}

These lines show that first of all objects a and b are introduced, then space is reserved
for them, and — after the main line

scan(INTEGER, a); fakul(a,b); printin(b);

(which means “read the integer a from the monitor, evaluate factorial a, and print it
out”) — the space reserved for ¢ and b is set free.

In the case when you want to evaluate the character table of 5, say, you need
only to replace fakul(a,b) by chartafel(a,b). You see that it is relatively easy to do
easy things with SYMMETRICA . We admit that this is no wonder.

1.3. The Main Topics of SYMMETRICA
Here are some of the topics covered by SYMMETRICA :

e Ordinary irreducible and Brauer characters as well as decomposition numbers
of symmetric groups,



ordinary irreducible characters of alternating groups,

ordinary irreducible characters of wreath products of symmetric groups,
ordinary and modular irreducible matrix representations of symmetric groups,
ordinary irreducible polynomial representations of general linear groups G'L,,(C),
ordinary irreducible projective representations of symmetric groups,

multivariate polynomials and in particular Schubert polynomials, also zonal
polynomials,

algebra of symmetric functions, including plethysm,

Schur polynomials as well as several other series of symmetric polynomials to-
gether with base change matrices,

zonal polynomials and Jack symmetric functions,
cycle indicator polynomials for combinatorial enumeration,
finite field arithmetic,

the ordinary group algebra of the symmetric groups, including manipulation of
tableaux.

Using these structures and appropriate procedures, you can evaluate irreducible char-
acters and decompose reducible ones. You can do combinatorial enumeration to some
extent, and you can also apply symmetry adapted bases by an application of irre-
ducible matrix representations, which can be evaluated explicitly. For these proce-
dures you can use

integer arithmetic, including long integers which are used automatically and if
necessary,

cyclotomic fields, which are necessary, for example, if you want to evaluate
characters or matrix representations of alternating groups.

2. Symmetry adapted bases

One of the most interesting applications of representation theory is the application
of matrix representations to the evaluation of symmetry adapted bases, which means
the decomposition of a vector space according to the symmetry of a given symmetric

operator 2. Here is a brief description what can be done by SYMMETRICA in this
context.



2.1. Matrix representations

SYMMETRICA can provide the orthogonal form of representing matrices for
the ordinary irreducible matrix representations of symmetric groups, and also the
seminormal form via

Odg(), Sdg()

as well as three versions of the rational integral form:

bdg(),ndg(), specht_dg()

The first one is the one described in H. Boerner’s book, first edition, the second one
is described in the book by D. E. Rutherford, in Boerner’st book, second edition,
as well as in the book by G. D. James and A. Kerber !. The third form is due to
W. Specht, and it has the advantage that it allows to evaluate a matrix representation
corresponding to a skew diagram. Here is a suitable program:

scan(PARTITION, part);
scan(PERMUTATION, perm);
bdg(part, perm, D);
tex(D);
sdg(part, perm, D);
tex(D);
odg(part, perm, D);

tex(D);

specht_dg(part, perm, D);

tex(D);
If you input the partition 2 3 (SYMMETRICA uses the French notation, i.e. a
partition is coded as increasing sequence) and the permutation (in list notation)

[23451], say, then you will receive an output which you can easily transform in a
TEX-readible file of the following form which shows you the corresponding matrices:

-1 -1 1 1 0
-1 0 0 0 1
0 -1 0 0 0
-1 0 0 1 0
0O -1 0 1 0

/4  —=3/8 3/8 —9/16 0
—1/2 1/ -4 =3/4 3/—-8 0
—1/2 —1/4  1/4 /8 —2/3
1 1/—-6 1/—-2 1/12 4/-9
0 1 0o 1/-2 1/-3
1/4 —1/4/3  1/4V/3 —3/4 0
—1/4/3 1/ —4 —3/4 1/ —43 0
—1/4/3  —1/4 1/4 1/12v/3  —1/3V6
3/4 1/ —12V3 1/ =43 1/12 1/ =32
0 1/36 0 1/-3vV2 1/-3



0 -1 0 0 0
o 0 -1 0 0
1 0 -1 -1 1
0o 0 -1 0 1
0o 1 -1 -1 1

There are also routines for the evaluation of the ordinary irreducible polynomial
representations of general linear groups G'L,,(C) :

glmndg()

uses symmetry adapted bases in order to decompose the tensor product @"(C™) as
G'L,,(C)-module. The output is a vector of polynomial matrices corresponding to
the irreducible constituents (which means the ordinary irreducible polynomial matrix
representations of /L, associated with the partitions of n with at most m parts).
Here you can use odg (if you call 0L, see the first line in the following program) or
either bdg() (the second line, calling 11) for the representations of symmetric groups,
and, as far as it has been tested with bdg(), the polymials in the representing matrices
turned out to have integral coefficients. Here is the main part of the program:

scan(INTEGER, m);

scan(INTEGER,n);

glmndg(m,n, M,0L);

println(M);

for(i = 0Lyi < S_-V_LI(M); + + i)
glm_homtest(m, SV _I(M,1));
glmndg(m,n, M, 1L);
println(M);

for(i = 0L;i < S_-V_LI(M); + + 1)
glm_homtest(m, SV _I(M,1));

(please note that it contains a test for homomorphism property). In case you enter
2 for m as well as for n, you will obtain an output which needs some explanations.
Here are the first few lines of the output:

D =3%1(Dy)+ 1 x1(Dy)

[

[1

2]

01

[1:1:]

01

[0:2:]

]

[2



The first row of this output indicates that the tensor square ®*C? decomposes
(as Sy—left module) into three times the representation Dy of Sy (which corresponds
to the first partition of 2 and therefore is equal to the identity representation, as
we are numbering partitions in the reverse lexicographical way) and the (alternating)
representation Dy with multiplicity 1. In the second row of the output we start giving
the representing matrix for G Ly row by row. The first bracket is the bracket of the
matrix, the second bracket indicates that here the first row starts. The first entry 1 is
the coefficient of the first monomial in the first entry of the representing matrix, and
so on. The first monomial is indicated by [2 :] which says that only indeterminates of
the form x4 j occur, and just the first one of them, which is 17, and that its exponent
is 2. The end of the first row is indicated by :]. Hence the upper left hand corner of
the representing matrix is as follows:

2 2
1- X1 1- 1112 1- Ti9

92...

A more general monomial, say x12793 is indicated in this method by
1
[0:1:0:]
[0:0:1:]:]
Another routine, namely

glpdg()

gives, for a partition of n with at most m parts, the corresponding irreducible poly-
nomial representation of G'L,,(C). It should be noted, that this last routine uses the
orthogonal form of the representations of the symmetric group. Moreover we should
mention that in this case at present no homomorphism test can be applied. (The
homomorphism test, which is the routine glm_homtest(), as you saw already, runs
as follows: Two matrices are generated, the entries of which are randomly generated
integers between -5 and +5, and it is checked if the product of their images is the
image of their product.)

There is also a way of getting the output in INTpX-readable form (but up to now it
works only for the representations of general linear groups). Here is a corresponding
test program:

glmndg(m,n, M, 1L);

println(M);

for(i = 0Lyi < S_-V_LI(M); + + i)
latex_glm_dar(S_V_I(M,1));

In the case when you enter 2 for m and for n, then the IATpX-readable part of the



output is, after processing it with IATRX:
vt
2011291
2

Lo
11212
T12T21 + T11%22
21222

2
L19
2212222

2
Log

[ —T12T21 + T11%22

You see that latex_glm_dar() gives each column of the representing matrix in a sep-
arate array.

2.2. Symmetry adaptation

The method used for the evaluation of the irreducible polynomial representations
of general linear groups is that of symmetry adapted bases. This method is of high
interest for all kinds of applications of symmetry in mathematics and sciences. Let us
mention the particular case when a given matrix M over C has a certain symmetry,

say,
MD(g) = D(g)M,

for each element ¢ of a finite group G, and a given (possibly reducible) representation

D of GG over C. Then we can find a basis such that by transformation M decomposes

into

M,

AMA™! =

Here is a program that does this job:

sabinput(S,SMat, M );
group_gen(S,SMat, D, Di);
sab(Di, D, B, M, mcp);
println(mep);

println(M);

printin(B);



You see that you need to input S (a set of generating elements of the symmetry
group), SMat (the set of irreducible matrices that represent the generators, for each
irreducible representation contained in the representation of the symmetry group),
and M, the operator that you want to decompose. Here is an example, which we
describe along the input file:

input file
2

4
2134
4
2341
5
111
1
111
1
331
10-1
01-1
00-1
331
-110
-101
-100
221
1-1
0-1
221
-10
11
331
1-11
0-10
00-1
331
1-11
100
010
111
-1
111
-1
441
0111
1011
1101
1110

comment not in input file

2 Generators

generator is a permutation of 94
the generator in list notation
generator is a permutation of 94
the generator in list notation
number of irreps of Sy

size of reresenting matrix, with integer (=1) entries
the value of the single entry

size and kind of entries for the second generator
the value of the single entry

size of the second irrep

entries

entries

entries

size of the second irrep for the second generator
entries

entries

entries

third irrep

entries

entries

third irrep on the second generator
entries

entries

fourth irrep

entries

entries

entries

fourth irrep on the second generator
entries

entries

entries

size of last irrep

single ntry

size of last irrep

single entry

size of the operator to be decomposed
entries of the operator

entries of the operator

entries of the operator

entries of the operator

The first line of this input file says that there is a vector of length 2 to come
which contains the generators. These generators are given as permutations (note
that at present the symmetry adapted bases can be evaluated only in the case when
the symmetry group is acting as a permutation group on the basis of the space in

A11ectinn) Therafare the 4 i1 the cecand line meana that the foallavxineg ontro of the



If you want to check this example, then please put this input into a file input, say,
and enter (after having the test program compiled)

a.out < input > output

You will then find at the end of the file output the following lines:

The first of these lines says that the permutation representation of S; decomposes
into two irreducible representations Dy and Dy (according to the numbering in the
input file), that their degrees are 1 and 3, respectively, and so the transformed operator
decomposes into 4 blocks, three of which are equal. Thus the first row [1, 3] shows the
multiplicities of the blocks in the transformed operator. Note that, by theory, these
multiplicities are equal to the dimensions of the irreducibles! Finally the blocks are
given, each of them just once. Therefore, in our case, the transformed operator looks
as follows:

3 0 0 0
0 -1 0 0
0 0 -1 0
0o 0 0 -1

The final 4-rowed matrix contains the elements of the symmetry adapted basis in its
rows.
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