´

# List of input files for different solvers

## Kramer Mesner matrices from coding theory:

 id number of orbits, q, k, n, d, group solvediophant solver CPLEX 1 35 orbits, q=2 k=12 n=234 d=112 group=19105 link 0.1s input details 2 85 orbits, q=2 k=12 n=159 d=72 group=23286 link 0.1s input details 3 147 orbits, q=2 k=12 n=45 d=16 group=17909 link 0.1s input details 4 199 orbits, q=2 k=12 n=25 d=8 group=18737 link 37s input details random solution found 0.1s input details 0.1s input details 5 85 orbits q=2 k=12 n=204 d=94 group=23286 link 7min 30s input details 0.1s input details 0.1s input details 6 145 orbits, q=2, k=12, n=144, d=64, group=17848 link 8min 28s input details 0.7s input details (0.2s smart cuts) 7 85 orbits q=2 k=12 n=255 d=120 group=23286 link 17min 55s input details 0.2s input details 0.1s input details 8 143 orbits q=2 k=11 n=157 d=70 group=39811 link >550h 7s input details 2.1s input details (1.0s smart cuts) 9 143 orbits q=2 k=11 n=166 d=76 group=39811 link 2m 3s input details 20s input details 10 205 orbits q=2 k=11 n=105 d=45 group=39594 link 14m input details 0.3s input details

## Kramer Mesner matrices from q-analogues of Steiner Systems

we are looking for a set of b k-dim subspaces of GF(q)v such that the intersection of two such subspaces is at most 1-dimensional

 id number of orbits, q, v, k, solvediophant solver CPLEX 1395 orbits q=2 v=6 k=3 b=50 group=identity link 29s input details 1 189 orbits q=2 v=7 k=3 b=210 group=125421 link 24s input details (search b=100) 2.4s input details (opt=273) 11811 3-spaces q=2 v=7 k=3 group=identity link 3 567 orbits q=2 v=7 k=3 b=280 group=125461 link 12m input details 2.7h input details (opt=304)

## Matrices for Singer cycles

we try to find a set of k-dim subspaces of GF(q)v such that the intersection of two such subspaces is at most 1-dimensional by building the set as a union of b orbits of a Singer cycle

 id number of orbits, q, v, k, solvediophant solver CPLEX 320 orbits q=2 v=8 k=3 b=6, all orbits not found input 949 orbits q=2 v=9 k=3 b=11, some random orbits not found input 20000 orbits q=2 v=14 k=3 b=170, some random orbits input (gz)

University of Bayreuth -