q-analogs of combinatorial designs and network codes

Axel Kohnert
Zürich October 20, 2010

University of Bayreuth
axel.kohnert@uni-bayreuth.de

(joint work with A.S. Elsenhans, A. Wassermann)
Agenda

- Combinatorial Designs
- Network Codes
- Large Network Codes
I - Combinatorial Designs
Combinatorial Designs

- a set of v points
Combinatorial Designs

- a set of v points
- a set of blocks (block := set of points)
Combinatorial Designs

- a set of v points
- a set of blocks (block := set of points)
- $t - (v, k, \lambda)$ Design
Combinatorial Designs

• a set of \(v \) points

• a set of blocks (block := set of points)

• \(t - (v, k, \lambda) \) Design
 each block is a \(k \)-set
 each \(t \)-set of points is in exactly \(\lambda \) blocks
Combinatorial Designs

- a set of \(v \) points
 \[a, b, c, d, e, f, g \]
- a set of blocks (block := set of points)

- \(t - (v, k, \lambda) \) Design
 each block is a \(k \)-set
 each \(t \)-set of points is in exactly \(\lambda \) blocks
Combinatorial Designs

- a set of v points
 a, b, c, d, e, f, g
- a set of blocks (block := set of points)
 $abe, adg, acf, bcg, bdf, cde, efg$
- $t - (v, k, \lambda)$ Design
 each block is a k–set
 each t–set of points is in exactly λ blocks
Combinatorial Designs

• a set of \(v \) points
 \(a, b, c, d, e, f, g \)

• a set of blocks (block := set of points)
 \(abe, adg, acf, bcg, bdf, cde, efg \)

• \(t - (v, k, \lambda) \) Design
 each block is a \(k \)-set
 each \(t \)-set of points is in exactly \(\lambda \) blocks

\(2 - (7, 3, 1) \) design
This is a selection problem in the lattice of all subsets of \(\{a, b, c, d, e, f, g\} \).
Combinatorial Designs

This is a selection problem in the lattice of all subsets of \(\{a, b, c, d, e, f, g\} \).
This is a selection problem in the lattice of all subsets of \(\{a, b, c, d, e, f, g\} \) = 1111111
This is a selection problem in the lattice of all subsets of \(\{a, b, c, d, e, f, g\}\) = 1111111 = Hamming Graph
Combinatorial Designs

Fano plane

a

b
d
e
c
f

g
Designs over Finite Fields

• a set of \(v \) points

• a set of \(k \)-blocks

\(t-(v,k,\lambda) \) Design

each \(t \)-set of points is in exactly \(\lambda \) blocks
Designs over Finite Fields

- a set of v points
- linear v–space \mathbb{F}_q^v
- a set of k–blocks

$t - (v, k, \lambda)$ Design
each t–set of points is in exactly λ blocks
Designs over Finite Fields

- a set of \(v \) points
- linear \(v \)-space \(\mathbb{F}_q^v \)
- a set of \(k \) blocks
- a set of \(k \)-spaces in \(\mathbb{F}_q^v \)
- \(t - (v, k, \lambda) \) Design
 each \(t \)-set of points is in exactly \(\lambda \) blocks
Designs over Finite Fields

- a set of \(v \) points
 linear \(v \)-space \(\mathbb{F}_q^v \)
- a set of \(k \) blocks
 a set of \(k \)-spaces in \(\mathbb{F}_q^v \)
- \(t-(v,k,\lambda) \) Design
 each \(t \)-set of points is in exactly \(\lambda \) blocks
- \(t-(v,k,\lambda) \) \(q \)-Design
 each \(t \)-space of \(\mathbb{F}_q^v \) is in exactly \(\lambda \) of the chosen \(k \)-spaces
Combinatorial Designs

- A selection problem in the 'Linear Lattice' of all subspaces of \mathbb{F}_q^v.

```
  1  abcdefg
 7  6-sets
21  5-sets
35  4-sets
35  3-sets
21  2-sets
 7  1-sets
 1  empty set
```
Combinatorial Designs

- A selection problem in the 'Linear Lattice' of all subspaces of \(\mathbb{F}_q^v \).

size given by the \(q \)-binomial coefficients \(\begin{bmatrix} v \\ k \end{bmatrix}_q \) := number of the \(k \)-subspaces of \(\mathbb{F}_q^v \).
known:
- Thomas (1987): first to study, 2–designs
- Braun, Kerber, Laue (2005): first 3–design

open problems:
- q–analog of the Fano plane?
- Steiner systems? ($\lambda = 1$)
- $t > 3$? (up to $t = 9$ in classical case)
II - Network Codes
Network Codes

Model (Kötter, Kschischang)
Model (Kötter, Kschischang) one codeword:

- vectorspace $V \subset \mathbb{F}_2^q$
Network Codes

Model (Kötter, Kschischang)

one codeword:

- vectorspace $V < \mathbb{F}_2^v$

one vertex in the network:

- receives several $v_i \in V$
- sends random combination of the v_i (= EXOR)
codeword:
- subspace of \mathbb{F}_2^ν
Error Correcting Network Codes

codeword:
 • subspace of \mathbb{F}_2^ν

distance d:
 • graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^ν
Error Correcting Network Codes

codeword:
 • subspace of \mathbb{F}_2^v

distance d:
 • graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^v

$U, W < \mathbb{F}_2^v$:

$$d(U, W) = \dim(U) + \dim(W) - 2\dim(U \cap W)$$
Error Correcting Network Codes

for a fixed d:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$
for a fixed d:

find a set of subspaces of \mathbb{F}_2^ν with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k–dimensional subspaces of \mathbb{F}_2^ν with pairwise distances $\geq 2d$
for a fixed d:

find a set of subspaces of \mathbb{F}_2^q with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k–dimensional subspaces of \mathbb{F}_2^q with pairwise distances $\geq 2d$

constant dimension codes $\approx q$– analog of constant weight codes
Construction

original problem

find a set of \(k \)-dimensional subspaces of \(\mathbb{F}_q^2 \) with pairwise distances \(\geq 2d \)
Construction

original problem

find a set of k–dimensional subspaces of \mathbb{F}_2^q
with pairwise distances $\geq 2d$

modified version

find k–dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^q such that
the pairwise intersection is at most 1–dimensional
Construction

original problem

find a set of k–dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

modified version

find k–dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^v such that the pairwise intersection is at most 1–dimensional

\Rightarrow code with minimum distance $\geq 2(k - 1)$
This is a selection problem in the lattice of all subsets of \(\{a, b, c, d, e, f, g\} \)
Singer Cycle

- On \mathbb{F}_2^ν acts the Singer cycle S
- i.e. multiplication in \mathbb{F}_{2^ν} with non-zero elements
On \mathbb{F}_2^ν acts the Singer cycle S

i.e. multiplication in \mathbb{F}_{2^ν} with non-zero elements

inducing action of $S = (\mathbb{F}_{2^\nu})^*$ on the k–spaces
Singer Cycle

- On \mathbb{F}_2^ν acts the Singer cycle S
- i.e. multiplication in \mathbb{F}_2^ν with non-zero elements
- inducing action of $S = (\mathbb{F}_2^\nu)^*$ on the k–spaces

find a Singer orbit O on the k–dim. subspaces of \mathbb{F}_2^ν such that the pairwise intersection of the $V_i \in O$ is at most 1–dimensional
Singer Cycle

- typical Singer orbit on k-spaces has $2^\nu - 1$ elements
- like in the case of the action on \mathbb{F}_2^ν
• typical Singer orbit on k–spaces has $2^v - 1$ elements

• like in the case of the action on \mathbb{F}_2^v

• for v large enough there are ’good’ orbits having above 1–dim. intersection property
• typical Singer orbit on k–spaces has $2^v - 1$ elements
• like in the case of the action on \mathbb{F}_2^v
• for v large enough there are ’good’ orbits having above 1–dim. intersection property
• good orbit \Rightarrow code with $2^v - 1$ codewords and minimum distance $\geq 2(k - 1)$
Description of Singer orbit

• Given a \(k \)-dimensional space \(\{u_1, \ldots, u_{2^k - 1}, 0\} \) < \(\mathbb{F}_2^\nu \)
Description of Singer orbit

- Given a k-dimensional space $\{u_1, \ldots, u_{2^k-1}, 0\} < \mathbb{F}_2^v$
- take $\{u_1, \ldots, u_{2^k-1}\}$ as elements in the field \mathbb{F}_2^v
- action of S is multiplication in \mathbb{F}_2^v
Description of Singer orbit

- Given a k-dimensional space \(\{u_1, \ldots, u_{2^k-1}, 0\} \subset \mathbb{F}_2^v \)
- take \(\{u_1, \ldots, u_{2^k-1}\} \) as elements in the field \(\mathbb{F}_{2^v} \)
- action of \(S \) is multiplication in \(\mathbb{F}_{2^v} \)
- pairwise quotients \(u_i/u_j \) are invariant under the action of \(S \)
Description of Singer orbit

- Given a k-dimensional space $\{u_1, \ldots, u_{2^k-1}, 0\} < \mathbb{F}_2^v$
- take $\{u_1, \ldots, u_{2^k-1}\}$ as elements in the field \mathbb{F}_2^v
- action of S is multiplication in \mathbb{F}_2^v
- pairwise quotients u_i/u_j are invariant under the action of S
- describe a complete orbit by the pairwise $2^k \choose 2$ quotients
Example

\[k = 3 \text{, } 3\text{-}\text{space} = \{0, 1, 4, 10, 18, 23, 25\} \]

= exponents of a generator of \(\mathbb{F}_{2^v}^* \) (only for the example)
\(k = 3 \), \(3 \)-space = \(\{0, 1, 4, 10, 18, 23, 25\} \)

= exponents of a generator of \(\mathbb{F}_{2^v}^* \) (only for the example)

orbit graph \(G_O \)
Lemma: \(O \) is a good orbit \iff all the pairwise quotients are different
Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k–dim. subspace of \mathbb{F}_2^ν such that the pairwise quotients are all different

\Rightarrow code with $2^\nu - 1$ codewords and minimum distance $\geq 2(k - 1)$
Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k–dim. subspace of \mathbb{F}_2^v such that the pairwise quotients are all different

\Rightarrow code with $2^v - 1$ codewords and minimum distance $\geq 2(k - 1)$

find a set $\{V_1, \ldots, V_b\}$ of 'combinable' k–dim. subspaces of \mathbb{F}_2^v such that the pairwise quotients are different

\Rightarrow code with $b(2^v - 1)$ codewords and minimum distance $\geq 2(k - 1)$
<table>
<thead>
<tr>
<th>v</th>
<th>k</th>
<th>b</th>
<th>number of codewords</th>
<th>$2d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3</td>
<td>555</td>
<td>$555 \cdot (2^{15} - 1) = 18185685$</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1056</td>
<td>69204960</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2108</td>
<td>276297668</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>4032</td>
<td>1056960576</td>
<td>4</td>
</tr>
</tbody>
</table>
• special case: single orbit \((b = 1)\)
• number of codewords \(2^v - 1\)
• message is a \(3\)-space \(V < \mathbb{F}_2^v\)
Decoding

- special case: single orbit \(b = 1 \)
- number of codewords \(2^v - 1 \)
- message is a 3-space \(V < F_2^v \)

as \(d = 4 \): two possible cases in decoding:
 - one erasure (we received a 2-space \(U < V \))
 - one error (we received a 4-space \(U > V \))
Erasure

- received a 2-space \(U = \{x_1, x_2, x_3, 0\} < V \)
Erasure

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1 / x_2
Erasure

- received a 2−space \(U = \{x_1, x_2, x_3, 0\} < V \)
- compute \(x_1/x_2 \)
- find the edge \(\overrightarrow{x_1x_2} \) with label \(x_1/x_2 \) in the orbit graph \(G_O \)
Erasure

• received a 2–space \(U = \{ x_1, x_2, x_3, 0 \} < V \)
• compute \(x_1 / x_2 \)
• find the edge \(\overrightarrow{x_1x_2} \) with label \(x_1 / x_2 \) in the orbit graph \(G_O \)
• multiply \(x_1 \) with an edgelabel \(u \) from \(G_O \) giving a third base element \(ux_1 \) of \(V = \langle x_1, x_2, ux_1 \rangle \)
• received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
• compute x_1 / x_2
• find the edge $\overrightarrow{x_1x_2}$ with label x_1 / x_2 in the orbit graph G_O
• multiply x_1 with an edgelabel u from G_O giving a third base element ux_1 of $V = \langle x_1, x_2, ux_1 \rangle$
• costs: one multiplication (ux_1) and one division (x_1 / x_2) in \mathbb{F}_{2^v}
• we received a 4-space $U > V$
• we received a 4–space $U > V$
• choose a random 3–subspace $W < U$,
• we received a 4–space $U > V$
• choose a random 3–subspace $W < U$,
• we know: $W \cap V$ is at least 2–dimensional
• we received a 4–space $U > V$
• choose a random 3–subspace $W < U$,
• we know: $W \cap V$ is at least 2–dimensional
• loop over the 7 2–dim subspaces of W
• we received a 4−space $U > V$
• choose a random 3−subspace $W < U$,
• we know: $W \cap V$ is at least 2−dimensional
• loop over the 7 2−dim subspaces of W
• at least one of it is a 2−dim subspace of V and we can apply the erasure algorithm, including a check whether the third constructed vector is in U
• we received a 4−space \(U > V \)
• choose a random 3−subspace \(W < U \),
• we know: \(W \cap V \) is at least 2−dimensional
• loop over the 7 2−dim subspaces of \(W \)
• at least one of it is a 2−dim subspace of \(V \) and we can apply the erasure algorithm, including a check whether the third constructed vector is in \(U \)
• worst case costs: 7 divisions and 7 multiplications
Generalisations

• It works for $b > 1$, you have to store the representing quotient-set for each orbit
Generalisations

- It works for $b > 1$, you have to store the representing quotient-set for each orbit
- It works for $k > 3$, the number of 2-subspaces is increasing
Generalisations

- It works for \(b > 1 \), you have to store the representing quotient-set for each orbit
- It works for \(k > 3 \), the number of 2-subspaces is increasing
- It works for all finite fields
III - Large Network Codes
good orbits

- Restrict to codes from good orbits = intersection of two k–dim. codewords in the Singer orbit is at most one-dimensional.
good orbits

- Restrict to codes from good orbits = intersection of two k–dim. codewords in the Singer orbit is at most one-dimensional.

- Describe a 'bad' basis (representing a non good orbit) as a \mathbb{F}_2^v–solution b_1, \ldots, b_k of at least one of the equations for identical quotients:

$$\frac{l_a}{l_b} = \frac{l_c}{l_d}$$

with l_i one of the $(2^k - 1)$ nonzero \mathbb{F}_2–linear combination of the b_j.
good orbits

- at most \((2^k - 1)^4\) equations
good orbits

- at most \((2^k - 1)^4\) equations
- one equation has at most \(2 (2^\nu - 1)^{k-1}\) solutions
good orbits

- at most \((2^k - 1)^4\) equations
- one equation has at most \(2(2^v - 1)^{k-1}\) solutions
- number of bad bases \(<(2^k - 1)^4 \cdot 2 \cdot (2^v - 1)^{k-1}\) is slower increasing (with increasing \(v\)) than the number of all bases (about \((2^v - 1)^k\))
good orbits

• number of equations can be reduced from

\((2^k - 1)^4\)
good orbits

- number of equations can be reduced from $(2^k - 1)^4$
- to $\left[\begin{array}{c} k \\ 2 \end{array} \right]_2 + 28 \left[\begin{array}{c} k \\ 3 \end{array} \right]_2 + 280 \left[\begin{array}{c} k \\ 4 \end{array} \right]_2$
good orbits

- number of equations can be reduced from
 \((2^k - 1)^4\)

- to \[\left(\begin{array}{c} k \\ 2 \end{array} \right)^2 + 28 \left(\begin{array}{c} k \\ 3 \end{array} \right)^2 + 280 \left(\begin{array}{c} k \\ 4 \end{array} \right)^2 \]

Lemma: for \(\nu > 4k - 6 \) there are good orbits.
combinable orbits

- given one good orbit again only a ’small’ number of orbits are excluded
combinable orbits

- given one good orbit again only a ’small’ number of orbits are excluded
- same argument: a small number of equations with a small number of solutions
combinable orbits

• given one good orbit again only a ’small’ number of orbits are excluded
• same argument: a small number of equations with a small number of solutions
• a naive greedy algorithm then already gives a huge number of combinable orbits
combinable orbits

- given one good orbit again only a ’small’ number of orbits are excluded
- same argument: a small number of equations with a small number of solutions
- a naive greedy algorithm then already gives a huge number of combinable orbits
- e.g. \(k = 3, v = 64 \) gives \(10^{16} \) orbits of \(2^{64} - 1 \) codewords
• given one good orbit again only a ’small’ number of orbits are excluded
• same argument: a small number of equations with a small number of solutions
• a naive greedy algorithm then already gives a huge number of combinable orbits
• e.g. $k = 3, v = 64$ gives 10^{16} orbits of $2^{64} - 1$ codewords
• e.g. $k = 4, v = 128$ gives 10^{34} orbits of $2^{128} - 1$ codewords
• using the idea described for a single orbit we now have to store a representative for each of the 10^{large} orbits
coding/decoding

• using the idea described for a single orbit we now have to store a representative for each of the 10^{large} orbits

• a much better idea is needed to avoid storing this huge number of quotient sets
new construction

• new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)
new construction

• new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)

• to construct a code with \(k\)–dimensional codewords in \(\mathbb{F}_{2^v}\) we start with \(k\) affine lines in \(\mathbb{F}_{2^v}\)
new construction

- new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)
- to construct a code with k–dimensional codewords in \mathbb{F}_{2^v} we start with k affine lines in \mathbb{F}_{2^v}
- for each line we have a map
 \[b_i : \mathbb{F}_{2^v} \to \mathbb{F}_{2^v} : t \mapsto a_i + s_i t \text{ for some } a_i, s_i \in \mathbb{F}_{2^v} \]
new construction

• new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)

• to construct a code with k–dimensional codewords in \mathbb{F}_{2^v} we start with k affine lines in \mathbb{F}_{2^v}

• for each line we have a map $b_i : \mathbb{F}_{2^v} \to \mathbb{F}_{2^v} : t \mapsto a_i + s_it$ for some $a_i, s_i \in \mathbb{F}_{2^v}$

• idea: use t to label the 2^v k–dimensional subspaces $\langle b_1(t), \ldots, b_k(t) \rangle$
new construction
new construction

- we have to make sure, that the k points on the line are linearly independent
new construction

• we have to make sure, that the k points on the line a linearily independent

• similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least $2^v - 2^k + 1$, in praxis independent for all t.
new construction

- we have to make sure, that the k points on the line a linearily independent
- similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least $2^v - 2^k + 1$, in praxis independent for all t.
- now look at the orbits of each space
new construction

• we have to make sure, that the k points on the line are linearly independent

• similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least $2^v - 2^k + 1$, in praxis independent for all t.

• now look at the orbits of each space

• to check whether good and combinable we have to look at the $(2^k - 1)(2^k - 2)$ quotients

\[
 t \mapsto \frac{l_i(b_1(t), \ldots, b_k(t))}{l_j(b_1(t), \ldots, b_k(t))}
\]
new construction

- these are circles in the Miquelian inversive plane (finite analogue of Riemann sphere)
new construction

- the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of t.
new construction

- the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of \(t \).
- we call this set of parameters the exceptional set of the code (given by the \(k \) lines (= pairs \(a_i, s_i \)).
new construction

• the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of \(t \).

• we call this set of parameters the exceptional set of the code (given by the \(k \) lines (= pairs \(a_i, s_i \))

• \(k = 3, 2\nu = 64 \), experiment gave an example with an exceptional set of only 234 parameters. This gives a code of minimum distance 4 and \((2^{64} - 1)(2^{32} - 234)\) codewords
new construction

- the non-combinable condition corresponds to an intersection of two circles with the extra condition, that intersection must happen for the same value of t.
- we call this set of parameters the **exceptional** set of the code (given by the k lines (= pairs a_i, s_i))
- $k = 3$, $2v = 64$, experiment gave an example with an exceptional set of only 234 parameters. This gives a code of minimum distance 4 and $(2^{64} - 1)(2^{32} - 234)$ codewords
- $k = 4$, $2v = 128$, smallest exceptional set had 7044 elements \rightarrow Code with $(2^{128} - 1)(2^{64} - 7044)$ codewords
encoding/decoding

- central idea is to prepare a 'backup code' for the small exceptional set
encoding/decoding

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
encoding/decoding

• central idea is to prepare a 'backup code' for the small exceptional set

• prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)

• now use C_2 if parameter t is from the exceptional set of C_1, check that for these cases the quotients of C_2 are not in C_1
• central idea is to prepare a ’backup code’ for the small exceptional set
• prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
• now use C_2 if parameter t is from the exceptional set of C_1, check that for these cases the quotients of C_2 are not in C_1
• prepare one further parameter t_0 such that the corresponding code in C_2 is combinable
encoding/decoding

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
- now use C_2 if parameter t is from the exceptional set of C_1, check that for these cases the quotients of C_2 are not in C_1
- prepare one further parameter t_0 such that the corresponding code in C_2 is combinable
- we have $2^v + 1$ combinable Singer orbits each of length $2^{2^v} - 1$
For encoding we will transform a bitsequence \((t, z) \in \mathbb{F}_{2^v} \times \mathbb{F}_{2^v} \) into a \(k\)–dim subspace of \(\mathbb{F}_{2^v}\).
For encoding we will transform a bitsequence \((t, z) \in F_{2^v} \times F_{2^{2v}}\) into a \(k\)-dim subspace of \(F_{2^{2v}}\).

- \(t\) is the parameter to select the orbit (typically in \(C_1\), in the exceptionally case from \(C_2\))
For encoding we will transform a bitsequence \((t, z) \in F_{2^v} \times F_{2^v}\) into a \(k\)-dim subspace of \(F_{2^v}\).

- \(t\) is the parameter to select the orbit (typically in \(C_1\), in the exceptionally case from \(C_2\))
- choose the proper subspace from the orbit by multiplying with \(z \neq 0\)
encoding/decoding

For encoding we will transform a bitsequence \((t, z) \in \mathbb{F}_{2^v} \times \mathbb{F}_{2^{2v}}\) into a \(k-\text{dim}\) subspace of \(\mathbb{F}_{2^{2v}}\).

- \(t\) is the parameter to select the orbit (typically in \(C_1\), in the exceptionally case from \(C_2\))
- choose the proper subspace from the orbit by multiplying with \(z \neq 0\)
- if \(z\) is zero use an space from the orbit with parameter \(t_0\) in \(C_2\) and encode by \((t_0, t11 \ldots 11)\)
For decoding we use the ideas from the easier case of a single orbit. We received a space $U \subset \mathbb{F}_{2^v}$
For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^{2\nu}}$

- loop over all 2–dim subspaces Z (unique to the codewords)
For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^{2v}}$

- loop over all 2–dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^{2v}}$

- loop over all 2–dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^v}$

- loop over all 2–dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in \mathbb{F}_{2^v} gives the translation factor z inside the orbit giving the decoding candidate W
For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^v}$

- loop over all 2–dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in \mathbb{F}_{2^v} gives the translation factor z inside the orbit giving the decoding candidate W
- check that $\text{dim}(W \cap U) \geq k - 2$
encoding/decoding

For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^v}$

- loop over all $2-\dim$ subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in \mathbb{F}_{2^v} gives the translation factor z inside the orbit giving the decoding candidate W
- check that $\dim(W \cap U) \geq k - 2$
- return t, z with special care for the case $t = t_0$
T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes
T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes.

Thank you