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Combinatorial Designs

• a set of v points

a, b, c, d, e, f , g

• a set of blocks (block := set of points)

abe, adg, ac f , bcg, bd f , cde, e f g

• t − (v, k, λ) Design
each block is a k−set
each t−set of points is in exactly λ blocks

2 − (7, 3, 1) design
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Combinatorial Designs

This is a selection problem in the lattice of all subsets
of {a, b, c, d, e, f , g}
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Combinatorial Designs

0001111 1000111 1001011 1001101 1001110

1100100 1001001 1010010 0110001 0101010 0011100 0000111

1111111

0111111 1011111 1101111 1110111 1111011 1111101 1111110

1001111 ....................... more 5 sets

1000000 0100000 00100000001000 0000100 0000001

0000000

2sets

0000010

This is a selection problem in the lattice of all subsets
of {a, b, c, d, e, f , g}=1111111
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Combinatorial Designs

0001111 1000111 1001011 1001101 1001110

1100100 1001001 1010010 0110001 0101010 0011100 0000111

1111111

0111111 1011111 1101111 1110111 1111011 1111101 1111110

1001111 ....................... more 5 sets

1000000 0100000 00100000001000 0000100 0000001

0000000

2sets

0000010

This is a selection problem in the lattice of all subsets
of {a, b, c, d, e, f , g}=1111111=Hamming Graph
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Combinatorial Designs

Fano plane
a

b

e

d

f
g

c
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Designs over Finite Fields

• a set of v points

• a set of k−blocks
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Designs over Finite Fields

• a set of v points

linear v−space F
v
q

• a set of k−blocks

a set of k−spaces in F
v
q

• t − (v, k, λ) Design
each t−set of points is in exactly λ blocks

t − (v, k, λ) q−Design
each t−space of F

v
q is in exactly

λ of the chosen k−spaces
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Combinatorial Designs

• A selection problem in the ’Linear Lattice’ of all
subspaces of F

v
q.

7 

21 5−sets

35 4−sets

35 3−sets

21 2−sets

7 1−sets

1 empty set

6−sets

abcdefg1
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Combinatorial Designs

• A selection problem in the ’Linear Lattice’ of all
subspaces of F

v
q.

127 

5−dim spaces

3−dim spaces

2−dim spaces

127 1−dim−spaces

1 0 −dim space

6−dim spaces

GF(2)^71

4−dim spaces11811

11811

2667

2667

size given by the q-binomial coefficients
[

v

k

]

q

:= number

of the k−subspaces of F
v
q.
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Current State

known:
• Thomas (1987): first to study, 2−designs
• Braun, Kerber, Laue (2005): first 3−design

open problems:
• q−analog of the Fano plane?

• Steiner systems ? (λ = 1)
• t > 3? (up to t = 9 in classical case)
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Network Codes

Model (Kötter, Kschischang)

Sender

Receiver

A B

AB
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Network Codes

Model (Kötter, Kschischang)
one codeword:

• vectorspace V < F
v
2

Sender

Receiver

A B

AB
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Network Codes

Model (Kötter, Kschischang)
one codeword:

• vectorspace V < F
v
2

one vertex in the network:
• receives several vi ∈ V

• sends random combination
of the vi (= EXOR)

Sender

Receiver

A B

AB
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Error Correcting Network Codes

codeword:
• subspace of F

v
2
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Error Correcting Network Codes

codeword:
• subspace of F

v
2

distance d:
• graph theoretic distance in the Hasse diagram of

the subspace lattice of F
v
2

U, W < F
v
2 :

d(U, W) = dim(U) + dim(W)− 2dim(U ∩ W)
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Error Correcting Network Codes

for a fixed d:

find a set of subspaces of F
v
2 with pairwise

distances ≥ d

fix also dimension k of the subspaces:

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d

constant dimension codes ≈ q− analog of constant
weight codes
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Construction
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Construction

original problem

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d

modified version

find k−dim. subspaces {V1, . . . , Vb} in F
v
2 such that

the pairwise intersection is at most 1−dimensional

⇒ code with minimum distance ≥ 2(k − 1)
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Combinatorial Designs

This is a selection problem in the lattice of all subsets
of {a, b, c, d, e, f , g}
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Singer Cycle

• On F
v
2 acts the Singer cycle S

• i.e. multiplication in F2v with non-zero elements
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Singer Cycle

• On F
v
2 acts the Singer cycle S

• i.e. multiplication in F2v with non-zero elements

• inducing action of S = (F2v)∗ on the k−spaces

find a Singer orbit O on the k−dim. subspaces of
F

v
2 such that the pairwise intersection of the

Vi ∈ O is at most 1−dimensional
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• typical Singer orbit on k−spaces has 2v − 1
elements

• like in the case of the action on F
v
2
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Singer Cycle

• typical Singer orbit on k−spaces has 2v − 1
elements

• like in the case of the action on F
v
2

• for v large enough there are ’good’ orbits having
above 1−dim. intersection property

• good orbit ⇒ code with 2v − 1 codewords and
minimum distance ≥ 2(k − 1)

. – p. 19/42



Description of Singer orbit

• Given a k−dimensional space {u1, . . . , u2k−1, 0} <

F
v
2
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Description of Singer orbit

• Given a k−dimensional space {u1, . . . , u2k−1, 0} <

F
v
2

• take {u1, . . . , u2k−1} as elements in the field F2v

• action of S is multiplication in F2v

• pairwise quotients ui/uj are invariant under the
action of S

• describe a complete orbit by the pairwise
2(k

2)quotients
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Example

k = 3 , 3−space = {0, 1, 4, 10, 18, 23, 25}
= exponents of a generator of F

∗
2v (only for the example)
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Example

k = 3 , 3−space = {0, 1, 4, 10, 18, 23, 25}
= exponents of a generator of F

∗
2v (only for the example)

orbit graph GO
0 1

4

10

18

23

25

614
19
21

4 3

9101513

817187

5

22
232

2425

1
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different

find a k−dim. subspace of F
v
2 such that the

pairwise quotients are all different

⇒code with 2v − 1 codewords and minimum distance
≥ 2(k − 1)
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different

find a k−dim. subspace of F
v
2 such that the

pairwise quotients are all different

⇒code with 2v − 1 codewords and minimum distance
≥ 2(k − 1)

find a set {V1, . . . , Vb} of ’combinable’ k−dim.
subspaces of F

v
2 such that the pairwise quotients

are different

⇒ code with b (2v − 1) codewords and minimum
distance ≥ 2(k − 1)
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results

number of
v k b codewords 2d

15 3 555 555 ·
(

215 − 1
)

= 18185685 4

16 3 1056 69204960 4

17 3 2108 276297668 4

18 3 4032 1056960576 4
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Decoding

• special case: single orbit (b = 1)
• number of codewords 2v − 1

• message is a 3−space V < F
v
2

. – p. 24/42



Decoding

• special case: single orbit (b = 1)
• number of codewords 2v − 1

• message is a 3−space V < F
v
2

as d = 4: two possible cases in decoding:
• one erasure (we received a 2−space U < V)
• one error (we received a 4−space U > V)
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V
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Erasure
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• compute x1/x2

• find the edge −−→x1x2 with label x1/x2 in the orbit
graph GO
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V

• compute x1/x2

• find the edge −−→x1x2 with label x1/x2 in the orbit
graph GO

• multiply x1 with an edgelabel u from GO giving a
third base element ux1 of V = 〈x1, x2, ux1〉
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V

• compute x1/x2

• find the edge −−→x1x2 with label x1/x2 in the orbit
graph GO

• multiply x1 with an edgelabel u from GO giving a
third base element ux1 of V = 〈x1, x2, ux1〉

• costs: one multiplication (ux1) and one division
(x1/x2) in F2v
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Error

• we received a 4−space U > V
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• choose a random 3−subspace W < U,
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Error

• we received a 4−space U > V

• choose a random 3−subspace W < U,
• we know: W ∩ V is at least 2−dimensional
• loop over the 7 2−dim subspaces of W

• at least one of it is a 2−dim subspace of V and
we can apply the erasure algorithm, including a
check whether the third constructed vector is in U
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Error

• we received a 4−space U > V

• choose a random 3−subspace W < U,
• we know: W ∩ V is at least 2−dimensional
• loop over the 7 2−dim subspaces of W

• at least one of it is a 2−dim subspace of V and
we can apply the erasure algorithm, including a
check whether the third constructed vector is in U

• worst case costs: 7 divisions and 7 multiplications
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Generalisations

• It works for b > 1, you have to store the
representing quotient-set for each orbit
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increasing
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Generalisations

• It works for b > 1, you have to store the
representing quotient-set for each orbit

• It works for k > 3, the number of 2−subspaces is
increasing

• It works for all finite fields
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III - Large Network Codes
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good orbits

• Restrict to codes from good orbits = intersection
of two k−dim. codewords in the Singer orbit is at
most one-dimensional.
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good orbits

• Restrict to codes from good orbits = intersection
of two k−dim. codewords in the Singer orbit is at
most one-dimensional.

• Describe a ’bad’ basis (representing a non good
orbit) as a F2v -solution b1, . . . , bk of at least one of
the equations for identical quotients:

la

lb
=

lc
ld

with li one of the
(

2k − 1
)

nonzero F2−linear

combination of the bj.
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good orbits

• at most (2k − 1)4 equations
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good orbits

• at most (2k − 1)4 equations

• one equation has at most 2 (2v − 1)k−1 solutions
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good orbits

• at most (2k − 1)4 equations

• one equation has at most 2 (2v − 1)k−1 solutions

• number of bad bases (<(2k − 1)4·2·(2v − 1)k−1)
is slower increasing (with increasing v) than the
number of all bases (about (2v − 1)k)
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good orbits

• number of equations can be reduced from
(2k − 1)4
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good orbits

• number of equations can be reduced from
(2k − 1)4

• to
[

k

2

]

2

+ 28

[

k

3

]

2

+ 280

[

k

4

]

2
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good orbits

• number of equations can be reduced from
(2k − 1)4

• to
[

k

2

]

2

+ 28

[

k

3

]

2

+ 280

[

k

4

]

2

Lemma: for v > 4k − 6 there are good orbits.
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combinable orbits

• given one good orbit again only a ’small’ number
of orbits are excluded
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combinable orbits

• given one good orbit again only a ’small’ number
of orbits are excluded

• same argument: a small number of equations
with a small number of solutions

• a naive greedy algorithm then already gives a
huge number of combinable orbits

• e.g. k = 3, v = 64 gives 1016 orbits of 264 − 1
codewords

• e.g. k = 4, v = 128 gives 1034 orbits of 2128 − 1
codewords
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coding/decoding

• using the idea described for a single orbit we now
have to store a representative for each of the
10large orbits
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coding/decoding

• using the idea described for a single orbit we now
have to store a representative for each of the
10large orbits

• a much better idea is needed to avoid storing this
huge number of quotient sets
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new construction

• new idea: use a systematic way to find (and label)
combinable orbits (not a naive greedy algorithm)
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new construction

• new idea: use a systematic way to find (and label)
combinable orbits (not a naive greedy algorithm)

• to construct a code with k−dimensional
codewords in F22v we start with k affine lines in
F22v

• for each line we have a map
bi : F2v → F22v : t 7→ ai + sit for some ai, si ∈ F22v

• idea: use t to label the 2v k−dimensional
subspaces 〈b1(t), . . . , bk(t)〉
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new construction
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new construction

• we have to make sure, that the k points on the line
a linearily independent
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a linearily independent

• similar argument gives: for a fixed set of
parameters ai, si the number of independent
points is at least 2v − 2k + 1, in praxis
independent for all t.
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• now look at the orbits of each space
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new construction

• we have to make sure, that the k points on the line
a linearily independent

• similar argument gives: for a fixed set of
parameters ai, si the number of independent
points is at least 2v − 2k + 1, in praxis
independent for all t.

• now look at the orbits of each space
• to check whether good and combinable we have

to look at the (2k − 1)(2k − 2) quotients

t 7→
li(b1(t), . . . , bk(t))

lj(b1(t), . . . , bk(t))

. – p. 36/42



new construction

• these are circles in the Miquelian inversive plane
(finite analogue of Riemann sphere)

. – p. 37/42



new construction

• the non-combinable condition corresponds to a
intersection of two circles with the extra condition,
that intersection must happen for the same value
of t.
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that intersection must happen for the same value
of t.

• we call this set of parameters the exceptional set
of the code (given by the k lines (= pairs ai, si) )

. – p. 38/42



new construction

• the non-combinable condition corresponds to a
intersection of two circles with the extra condition,
that intersection must happen for the same value
of t.

• we call this set of parameters the exceptional set
of the code (given by the k lines (= pairs ai, si) )

• k = 3, 2v = 64, experiment gave an example with
an exceptional set of only 234 parameters. This
gives a code of minimum distance 4 and
(264 − 1)(232 − 234) codewords
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new construction

• the non-combinable condition corresponds to a
intersection of two circles with the extra condition,
that intersection must happen for the same value
of t.

• we call this set of parameters the exceptional set
of the code (given by the k lines (= pairs ai, si) )

• k = 3, 2v = 64, experiment gave an example with
an exceptional set of only 234 parameters. This
gives a code of minimum distance 4 and
(264 − 1)(232 − 234) codewords

• k = 4, 2v = 128, smallest exceptional set had
7044 elements –> Code with (2128 − 1)(264 − 7044)
codewords

. – p. 38/42



encoding/decoding

• central idea is to prepare a ’backup code’ for the
small exceptional set
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encoding/decoding

• central idea is to prepare a ’backup code’ for the
small exceptional set

• prepare two codes C1 and a backup code C2 (i.e.
use random affine lines and compute the
exceptional sets, which must be disjoint)
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encoding/decoding

• central idea is to prepare a ’backup code’ for the
small exceptional set

• prepare two codes C1 and a backup code C2 (i.e.
use random affine lines and compute the
exceptional sets, which must be disjoint)

• now use C2 if parameter t is from the exceptional
set of C1, check that for these cases the quotients
of C2 are not in C1
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encoding/decoding

• central idea is to prepare a ’backup code’ for the
small exceptional set

• prepare two codes C1 and a backup code C2 (i.e.
use random affine lines and compute the
exceptional sets, which must be disjoint)

• now use C2 if parameter t is from the exceptional
set of C1, check that for these cases the quotients
of C2 are not in C1

• prepare one further parameter t0 such that the
corresponding code in C2 is combinable

. – p. 39/42



encoding/decoding

• central idea is to prepare a ’backup code’ for the
small exceptional set

• prepare two codes C1 and a backup code C2 (i.e.
use random affine lines and compute the
exceptional sets, which must be disjoint)

• now use C2 if parameter t is from the exceptional
set of C1, check that for these cases the quotients
of C2 are not in C1

• prepare one further parameter t0 such that the
corresponding code in C2 is combinable

• we have 2v + 1 combinable Singer orbits each of
length 22v − 1
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encoding/decoding

For encoding we will transform a bitsequence (t, z) ∈
F2v × F22v into a k−dim subspace of F22v .
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F2v × F22v into a k−dim subspace of F22v .
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C1, in the exceptionally case from C2)
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encoding/decoding

For encoding we will transform a bitsequence (t, z) ∈
F2v × F22v into a k−dim subspace of F22v .

• t is the parameter to select the orbit (typically in
C1, in the exceptionally case from C2)

• choose the proper subspace from the orbit by
multiplying with z 6= 0
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encoding/decoding

For encoding we will transform a bitsequence (t, z) ∈
F2v × F22v into a k−dim subspace of F22v .

• t is the parameter to select the orbit (typically in
C1, in the exceptionally case from C2)

• choose the proper subspace from the orbit by
multiplying with z 6= 0

• if z is zero use an space from the orbit with
parameter t0 in C2 and encode by (t0, t11 . . . 11)
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encoding/decoding

For decoding we use the ideas from the easier case of
a single orbit. We received a space U < F22v

• loop over all 2−dim subspaces Z (unique to the
codewords)

• compute one quotient x in Z

• compute for each circle in the quotient space the
parameter t giving the quotient x, this identifies
the orbit

• a division in F22v gives the translation factor z
inside the orbit giving the decoding candidate W

• check that dim(W ∩ U) ≥ k − 2

• return t, z with special care for the case t = t0
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