q-analogs of combinatorial designs and network codes

Axel Kohnert Zürich October 20, 2010

University of Bayreuth axel.kohnert@uni-bayreuth.de

(joint work with A.S. Elsenhans, A. Wassermann)

- Combinatorial Designs
- Network Codes
- Large Network Codes

- a set of v points
- a set of blocks (block := set of points)

- a set of v points
- a set of blocks (block := set of points)
- $t (v, k, \lambda)$ Design

- a set of v points
- a set of blocks (block := set of points)
- $t (v, k, \lambda)$ Design

each block is a k-set each t-set of points is in exactly λ blocks

a, b, c, d, e, f, g

a set of blocks (block := set of points)

• $t - (v, k, \lambda)$ Design

each block is a k-set each t-set of points is in exactly λ blocks

a, b, c, d, e, f, g

a set of blocks (block := set of points)

abe, adg, acf, bcg, bdf, cde, efg

 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

a, b, c, d, e, f, g

a set of blocks (block := set of points)

abe, adg, acf, bcg, bdf, cde, efg

 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

2-(7,3,1) design

This is a selection problem in the lattice of all subsets of $\{a, b, c, d, e, f, g\}$

This is a selection problem in the lattice of all subsets of $\{a, b, c, d, e, f, g\}$

This is a selection problem in the lattice of all subsets of $\{a, b, c, d, e, f, g\}$ =111111

This is a selection problem in the lattice of all subsets of $\{a, b, c, d, e, f, g\}$ =1111111=Hamming Graph

• a set of k-blocks

• $t - (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of v points linear v-space \mathbb{F}_q^v
- a set of k-blocks

t - (v, k, λ) Design
 each t-set of points is in exactly λ blocks

- a set of v points linear v-space \mathbb{F}_q^v
- a set of k blocks a set of k - spaces in \mathbb{F}_a^v
- t (v, k, λ) Design
 each t-set of points is in exactly λ blocks

- a set of v points linear v-space \mathbb{F}_a^v
- a set of k blocks
 a set of k spaces in F^v_q
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks
 - $t (v, k, \lambda) q \text{Design}$ each t-space of \mathbb{F}_q^v is in exactly λ of the chosen k-spaces

• A selection problem in the 'Linear Lattice' of all subspaces of \mathbb{F}_q^v .

 A selection problem in the 'Linear Lattice' of all subspaces of F^v_a.

of the k-subspaces of \mathbb{F}_q^v .

Current State

known:

- Thomas (1987): first to study, 2-designs
- Braun, Kerber, Laue (2005): first 3-design

open problems:

- q-analog of the Fano plane?
- Steiner systems ? $(\lambda = 1)$
- t > 3? (up to t = 9 in classical case)

II - Network Codes

Network Codes

Model (Kötter, Kschischang)

Network Codes

Model (Kötter, Kschischang) one codeword:

• vectorspace $V < \mathbb{F}_2^v$

Model (Kötter, Kschischang) one codeword:

• vectorspace $V < \mathbb{F}_2^v$

one vertex in the network:

- receives several $v_i \in V$
- sends random combination of the v_i (= EXOR)

codeword:

• subspace of \mathbb{F}_2^v

codeword:

• subspace of \mathbb{F}_2^v

distance *d*:

- graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^v

codeword:

• subspace of \mathbb{F}_2^v

distance *d*:

- graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^v

 $U, W < \mathbb{F}_2^v$:

 $d(U,W) = dim(U) + dim(W) - 2dim(U \cap W)$

for a fixed *d*:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

for a fixed *d*:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

for a fixed *d*:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

constant dimension codes $\approx q-$ analog of constant weight codes

Construction

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

Construction

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

modified version

find k-dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^v such that the pairwise intersection is at most 1-dimensional

Construction

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

modified version

find k-dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^v such that the pairwise intersection is at most 1-dimensional

 \Rightarrow code with minimum distance $\geq 2(k-1)$

This is a selection problem in the lattice of all subsets of $\{a, b, c, d, e, f, g\}$

- On \mathbb{F}_2^v acts the Singer cycle S
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements

- On \mathbb{F}_2^v acts the Singer cycle *S*
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements
- inducing action of $S = (\mathbb{F}_{2^v})^*$ on the *k*-spaces

- On \mathbb{F}_2^v acts the Singer cycle *S*
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements
- inducing action of $S = (\mathbb{F}_{2^v})^*$ on the *k*-spaces

find a Singer orbit O on the k-dim. subspaces of \mathbb{F}_2^v such that the pairwise intersection of the $V_i \in O$ is at most 1-dimensional

Singer Cycle

- typical Singer orbit on k−spaces has 2^v − 1 elements
- like in the case of the action on \mathbb{F}_2^v

- typical Singer orbit on k-spaces has 2^v 1 elements
- like in the case of the action on \mathbb{F}_2^v
- for v large enough there are 'good' orbits having above 1-dim. intersection property

- typical Singer orbit on k-spaces has 2^v 1 elements
- like in the case of the action on \mathbb{F}_2^v
- for v large enough there are 'good' orbits having above 1-dim. intersection property
- good orbit \Rightarrow code with $2^v 1$ codewords and minimum distance $\ge 2(k-1)$

• Given a $k-\text{dimensional space } \{u_1,\ldots,u_{2^k-1},0\} < \mathbb{F}_2^v$

- Given a k-dimensional space $\{u_1, \ldots, u_{2^k-1}, 0\} < \mathbb{F}_2^v$
- take $\{u_1, \ldots, u_{2^k-1}\}$ as elements in the field \mathbb{F}_{2^v}
- action of *S* is multiplication in \mathbb{F}_{2^v}

- Given a k-dimensional space $\{u_1, \ldots, u_{2^k-1}, 0\} < \mathbb{F}_2^v$
- take $\{u_1, \ldots, u_{2^k-1}\}$ as elements in the field \mathbb{F}_{2^v}
- action of *S* is multiplication in \mathbb{F}_{2^v}
- pairwise quotients u_i/u_j are invariant under the action of S

- Given a k-dimensional space $\{u_1, \ldots, u_{2^k-1}, 0\} < \mathbb{F}_2^v$
- take $\{u_1, \ldots, u_{2^k-1}\}$ as elements in the field \mathbb{F}_{2^v}
- action of *S* is multiplication in \mathbb{F}_{2^v}
- pairwise quotients u_i/u_j are invariant under the action of S
- describe a complete orbit by the pairwise $2\binom{k}{2}$ quotients

Example

k = 3, 3-space = {0, 1, 4, 10, 18, 23, 25} = exponents of a generator of $\mathbb{F}_{2^v}^*$ (only for the example)

Example

k = 3, 3-space = $\{0, 1, 4, 10, 18, 23, 25\}$ = exponents of a generator of $\mathbb{F}_{2^v}^*$ (only for the example) orbit graph G_O

Lemma: O is a good orbit \iff all the pairwise quotients are different

Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k-dim. subspace of \mathbb{F}_2^v such that the pairwise quotients are all different

 \Rightarrow code with $2^v - 1$ codewords and minimum distance $\ge 2(k-1)$

Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k-dim. subspace of \mathbb{F}_2^v such that the pairwise quotients are all different

 \Rightarrow code with $2^v - 1$ codewords and minimum distance $\ge 2(k-1)$

find a set $\{V_1, \ldots, V_b\}$ of 'combinable' k-dim. subspaces of \mathbb{F}_2^v such that the pairwise quotients are different

 \Rightarrow code with $b(2^v-1)$ codewords and minimum distance $\geq 2(k-1)$

results

			number of	
\mathcal{U}	k	b	codewords	2 <i>d</i>
15	3	555	$555 \cdot \left(2^{15} - 1\right) = 18185685$	4
16	3	1056	69204960	4
17	3	2108	276297668	4
18	3	4032	1056960576	4

- special case: single orbit (b = 1)
- number of codewords $2^v 1$
- message is a 3-space $V < \mathbb{F}_2^v$

- special case: single orbit (b = 1)
- number of codewords $2^v 1$
- message is a 3-space $V < \mathbb{F}_2^v$

as d = 4: two possible cases in decoding:

- one erasure (we received a 2-space U < V)
- one error (we received a 4-space U > V)

• received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2
- find the edge $\overrightarrow{x_1x_2}$ with label x_1/x_2 in the orbit graph G_O

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2
- find the edge $\overrightarrow{x_1x_2}$ with label x_1/x_2 in the orbit graph G_O
- multiply x_1 with an edgelabel u from G_O giving a third base element ux_1 of $V = \langle x_1, x_2, ux_1 \rangle$

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2
- find the edge $\overrightarrow{x_1x_2}$ with label x_1/x_2 in the orbit graph G_O
- multiply x_1 with an edgelabel u from G_O giving a third base element ux_1 of $V = \langle x_1, x_2, ux_1 \rangle$
- costs: one multiplication (ux_1) and one division (x_1/x_2) in \mathbb{F}_{2^v}

Error

• we received a 4-space U > V

- we received a 4-space U > V
- choose a random 3-subspace W < U,

- we received a 4-space U > V
- choose a random 3-subspace W < U,
- we know: $W \cap V$ is at least 2-dimensional

- we received a 4-space U > V
- choose a random 3-subspace W < U,
- we know: $W \cap V$ is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W

- we received a 4-space U > V
- choose a random 3-subspace W < U,
- we know: $W \cap V$ is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W
- at least one of it is a 2-dim subspace of V and we can apply the erasure algorithm, including a check whether the third constructed vector is in U

- we received a 4-space U > V
- choose a random 3-subspace W < U,
- we know: $W \cap V$ is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W
- at least one of it is a 2-dim subspace of V and we can apply the erasure algorithm, including a check whether the third constructed vector is in U
- worst case costs: 7 divisions and 7 multiplications

• It works for b > 1, you have to store the representing quotient-set for each orbit

- It works for b > 1, you have to store the representing quotient-set for each orbit
- It works for k > 3, the number of 2-subspaces is increasing

- It works for b > 1, you have to store the representing quotient-set for each orbit
- It works for k > 3, the number of 2-subspaces is increasing
- It works for all finite fields

III - Large Network Codes

 Restrict to codes from good orbits = intersection of two k-dim. codewords in the Singer orbit is at most one-dimensional.

- Restrict to codes from good orbits = intersection of two k-dim. codewords in the Singer orbit is at most one-dimensional.
- Describe a 'bad' basis (representing a non good orbit) as a F_{2^v} -solution b₁,..., b_k of at least one of the equations for identical quotients:

$$\frac{l_a}{l_b} = \frac{l_c}{l_d}$$

with l_i one of the $(2^k - 1)$ nonzero \mathbb{F}_2 -linear combination of the b_j .

good orbits

• at most
$$(2^k - 1)^4$$
 equations

- at most $(2^k 1)^4$ equations
- one equation has at most 2 $(2^v 1)^{k-1}$ solutions

- at most $(2^k 1)^4$ equations
- one equation has at most 2 $(2^v 1)^{k-1}$ solutions
- number of bad bases (< $(2^k 1)^4 \cdot 2 \cdot (2^v 1)^{k-1}$) is slower increasing (with increasing v) than the number of all bases (about $(2^v - 1)^k$)

good orbits

• number of equations can be reduced from $(2^k - 1)^4$

• number of equations can be reduced from $(2^{k} - 1)^{4}$ • to $\begin{bmatrix} k \\ 2 \end{bmatrix}_{2}^{2} + 28 \begin{bmatrix} k \\ 3 \end{bmatrix}_{2}^{2} + 280 \begin{bmatrix} k \\ 4 \end{bmatrix}_{2}^{2}$

• number of equations can be reduced from $(2^{k} - 1)^{4}$ • to $\begin{bmatrix} k \\ 2 \end{bmatrix}_{2}^{2} + 28 \begin{bmatrix} k \\ 3 \end{bmatrix}_{2}^{2} + 280 \begin{bmatrix} k \\ 4 \end{bmatrix}_{2}^{2}$

Lemma: for v > 4k - 6 there are good orbits.

 given one good orbit again only a 'small' number of orbits are excluded

- given one good orbit again only a 'small' number of orbits are excluded
- same argument: a small number of equations with a small number of solutions

- given one good orbit again only a 'small' number of orbits are excluded
- same argument: a small number of equations with a small number of solutions
- a naive greedy algorithm then already gives a huge number of combinable orbits

- given one good orbit again only a 'small' number of orbits are excluded
- same argument: a small number of equations with a small number of solutions
- a naive greedy algorithm then already gives a huge number of combinable orbits
- e.g. k = 3, v = 64 gives 10^{16} orbits of $2^{64} 1$ codewords

- given one good orbit again only a 'small' number of orbits are excluded
- same argument: a small number of equations with a small number of solutions
- a naive greedy algorithm then already gives a huge number of combinable orbits
- e.g. k = 3, v = 64 gives 10^{16} orbits of $2^{64} 1$ codewords
- e.g. k = 4, v = 128 gives 10^{34} orbits of $2^{128} 1$ codewords

 using the idea described for a single orbit we now have to store a representative for each of the 10^{large} orbits

- using the idea described for a single orbit we now have to store a representative for each of the 10^{large} orbits
- a much better idea is needed to avoid storing this huge number of quotient sets

 new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)

- new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)
- to construct a code with k-dimensional codewords in $\mathbb{F}_{2^{2v}}$ we start with k affine lines in $\mathbb{F}_{2^{2v}}$

- new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)
- to construct a code with k-dimensional codewords in $\mathbb{F}_{2^{2v}}$ we start with k affine lines in $\mathbb{F}_{2^{2v}}$
- for each line we have a map $b_i : \mathbb{F}_{2^v} \to \mathbb{F}_{2^{2v}} : t \mapsto a_i + s_i t$ for some $a_i, s_i \in \mathbb{F}_{2^{2v}}$

- new idea: use a systematic way to find (and label) combinable orbits (not a naive greedy algorithm)
- to construct a code with k-dimensional codewords in $\mathbb{F}_{2^{2v}}$ we start with k affine lines in $\mathbb{F}_{2^{2v}}$
- for each line we have a map $b_i : \mathbb{F}_{2^v} \to \mathbb{F}_{2^{2v}} : t \mapsto a_i + s_i t$ for some $a_i, s_i \in \mathbb{F}_{2^{2v}}$
- idea: use t to label the 2^v k-dimensional subspaces $\langle b_1(t), \ldots, b_k(t) \rangle$

new construction

 we have to make sure, that the k points on the line a linearily independent

- we have to make sure, that the k points on the line a linearily independent
- similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least 2^v 2^k + 1, in praxis independent for all t.

- we have to make sure, that the k points on the line a linearily independent
- similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least 2^v 2^k + 1, in praxis independent for all t.
- now look at the orbits of each space

- we have to make sure, that the k points on the line a linearily independent
- similar argument gives: for a fixed set of parameters a_i, s_i the number of independent points is at least 2^v 2^k + 1, in praxis independent for all t.
- now look at the orbits of each space
- to check whether good and combinable we have to look at the $(2^k - 1)(2^k - 2)$ quotients

$$t \mapsto \frac{l_i(b_1(t), \dots, b_k(t))}{l_j(b_1(t), \dots, b_k(t))}$$

 these are circles in the Miquelian inversive plane (finite analogue of Riemann sphere)

 the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of t.

- the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of t.
- we call this set of parameters the exceptional set of the code (given by the k lines (= pairs a_i, s_i))

- the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of t.
- we call this set of parameters the exceptional set of the code (given by the k lines (= pairs a_i, s_i))
- k = 3, 2v = 64, experiment gave an example with an exceptional set of only 234 parameters. This gives a code of minimum distance 4 and $(2^{64} - 1)(2^{32} - 234)$ codewords

- the non-combinable condition corresponds to a intersection of two circles with the extra condition, that intersection must happen for the same value of t.
- we call this set of parameters the exceptional set of the code (given by the k lines (= pairs a_i, s_i))
- k = 3, 2v = 64, experiment gave an example with an exceptional set of only 234 parameters. This gives a code of minimum distance 4 and $(2^{64} - 1)(2^{32} - 234)$ codewords

• k = 4, 2v = 128, smallest exceptional set had 7044 elements -> Code with $(2^{128} - 1)(2^{64} - 7044)$ codewords

 central idea is to prepare a 'backup code' for the small exceptional set

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
- now use C₂ if parameter t is from the exceptional set of C₁, check that for these cases the quotients of C₂ are not in C₁

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
- now use C₂ if parameter t is from the exceptional set of C₁, check that for these cases the quotients of C₂ are not in C₁
- prepare one further parameter t_0 such that the corresponding code in C_2 is combinable

- central idea is to prepare a 'backup code' for the small exceptional set
- prepare two codes C_1 and a backup code C_2 (i.e. use random affine lines and compute the exceptional sets, which must be disjoint)
- now use C₂ if parameter t is from the exceptional set of C₁, check that for these cases the quotients of C₂ are not in C₁
- prepare one further parameter t_0 such that the corresponding code in C_2 is combinable
- we have $2^v + 1$ combinable Singer orbits each of length $2^{2v} 1$

• *t* is the parameter to select the orbit (typically in C_1 , in the exceptionally case from C_2)

- *t* is the parameter to select the orbit (typically in C_1 , in the exceptionally case from C_2)
- choose the proper subspace from the orbit by multiplying with $z \neq 0$

- *t* is the parameter to select the orbit (typically in C_1 , in the exceptionally case from C_2)
- choose the proper subspace from the orbit by multiplying with $z \neq 0$
- if z is zero use an space from the orbit with parameter t_0 in C_2 and encode by (t_0, t_1, \ldots, t_1)

encoding/decoding

For decoding we use the ideas from the easier case of a single orbit. We received a space $U < \mathbb{F}_{2^{2v}}$

loop over all 2-dim subspaces Z (unique to the codewords)

- loop over all 2-dim subspaces Z (unique to the codewords)
- compute one quotient x in Z

- loop over all 2-dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit

- loop over all 2-dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in $\mathbb{F}_{2^{2v}}$ gives the translation factor z inside the orbit giving the decoding candidate W

- loop over all 2-dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in $\mathbb{F}_{2^{2v}}$ gives the translation factor z inside the orbit giving the decoding candidate W
- check that $dim(W \cap U) \ge k-2$

- loop over all 2-dim subspaces Z (unique to the codewords)
- compute one quotient x in Z
- compute for each circle in the quotient space the parameter t giving the quotient x, this identifies the orbit
- a division in $\mathbb{F}_{2^{2v}}$ gives the translation factor z inside the orbit giving the decoding candidate W
- check that $dim(W \cap U) \ge k-2$
- return t, z with special care for the case $t = t_0$

A.S. Elsenhans, A. Kohnert, A. Wassermann: *Construction* of *Codes for Network Coding*, Proceedings MTNS 2010.

A.S. Elsenhans, A. Kohnert: *Constructing Network Codes* using Möbius Transformations, in preparation

- T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes
- A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance*, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

A.S. Elsenhans, A. Kohnert, A. Wassermann: *Construction* of *Codes for Network Coding*, Proceedings MTNS 2010.

A.S. Elsenhans, A. Kohnert: *Constructing Network Codes* using Möbius Transformations, in preparation

- T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes
- A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance*, LNCS, 2008.
- R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

