Network Codes and q-Analogues of Combinatorial Designs

Axel Kohnert Sascha Kurz Dublin September 2009

Bayreuth University Germany axel.kohnert@uni-bayreuth.de

- Combinatorial Designs
- Network Codes
- Construction

• a set of v points

- a set of v points
- a set of blocks (block = set of points)

- a set of v points
- a set of blocks (block = set of points)
- $t (v, k, \lambda)$ Design

- a set of v points
- a set of blocks (block = set of points)
- $t (v, k, \lambda)$ Design

each block is a k-set each t-set of points is in exactly λ blocks

a, b, c, d, e, f, g

a set of blocks (block = set of points)

• $t - (v, k, \lambda)$ Design

each block is a k-set each t-set of points is in exactly λ blocks

a,b,c,d,e,f,g

a set of blocks (block = set of points)

abe, adg, acf, bcg, bdf, cde, efg

 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

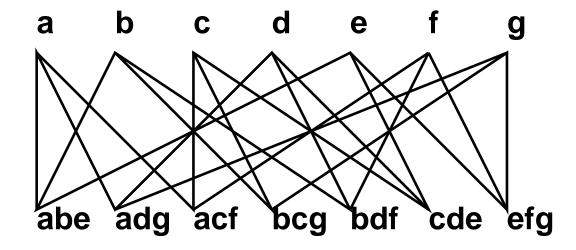
a, b, c, d, e, f, g

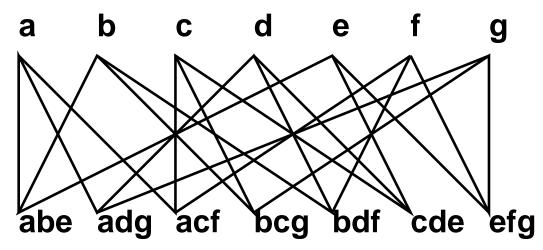
• a set of blocks (block = set of points)

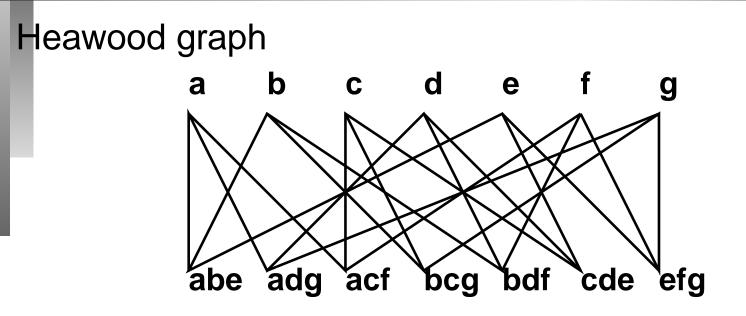
abe, adg, acf, bcg, bdf, cde, efg

 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

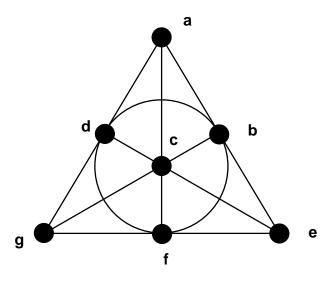
2 - (7, 3, 1) design







Fano plane



• a set of k-blocks

t - (v, k, λ) Design
 each t-set of points is in exactly λ blocks

linear v-space $GF(q)^v$

- a set of k-blocks
- t (v, k, λ) Design
 each t-set of points is in exactly λ blocks

linear v-space $GF(q)^v$

• a set of *k* - blocks

a set of k-spaces in $GF(q)^v$

t - (v, k, λ) Design
 each t-set of points is in exactly λ blocks

linear v-space $GF(q)^v$

• a set of *k* blocks

a set of k-spaces in $GF(q)^v$

• $t - (v, k, \lambda)$ Design

each *t*-set of points is in exactly λ blocks

 $t - (v, k, \lambda) q$ -Design each t-space of $GF(q)^v$ is in exactly λ of the k-spaces

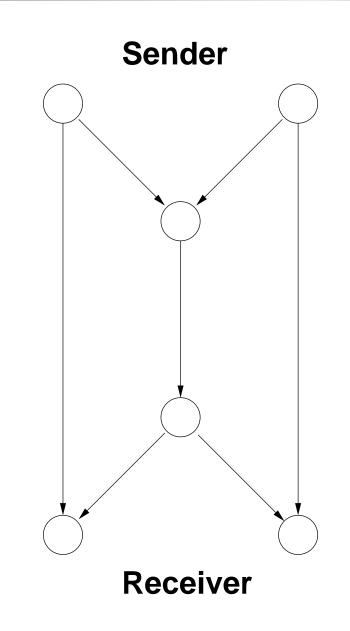
Current State

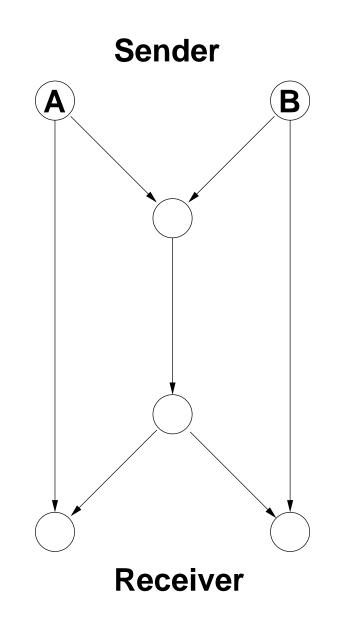
known:

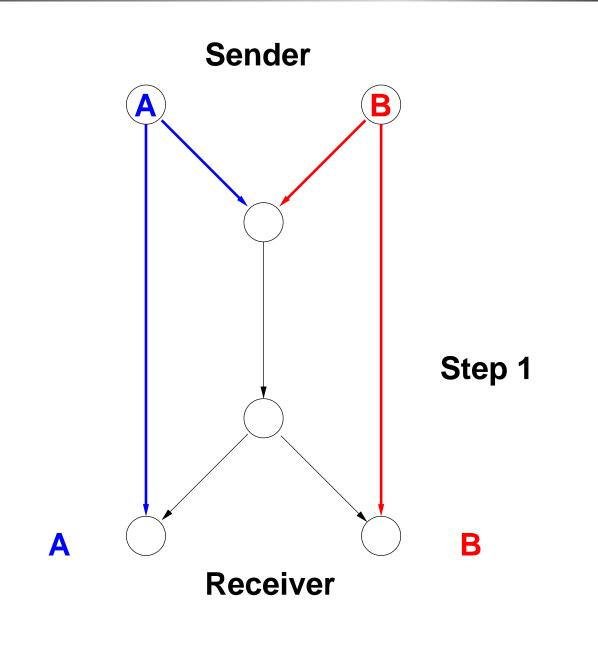
- Thomas (1987): first to study, 2-designs
- Braun, Kerber, Laue (2005): first 3-design

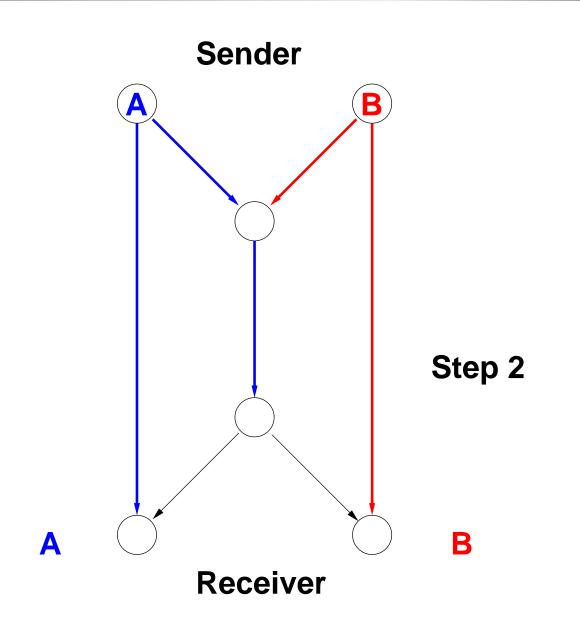
open problems:

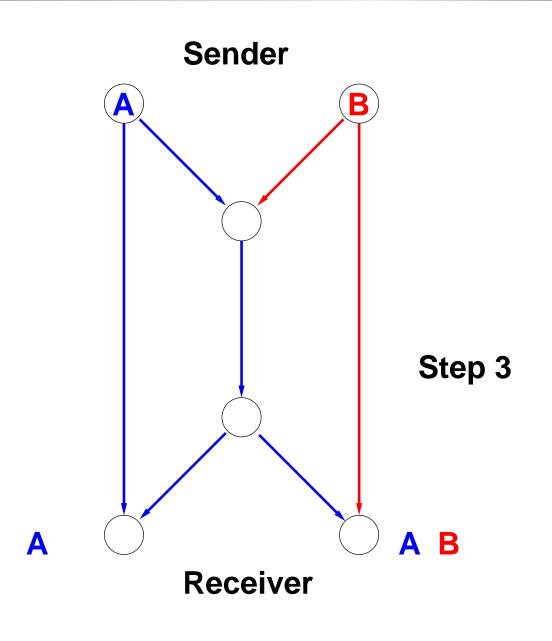
- q-analog of the Fano plane?
- Steiner systems ? $(\lambda = 1)$
- *t* > 3?

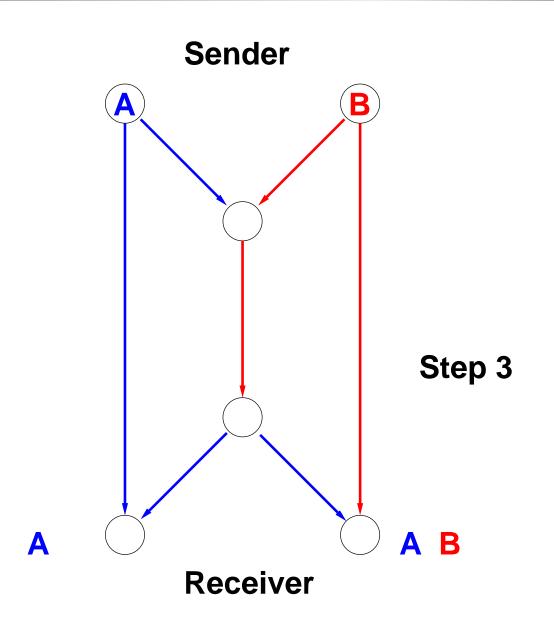


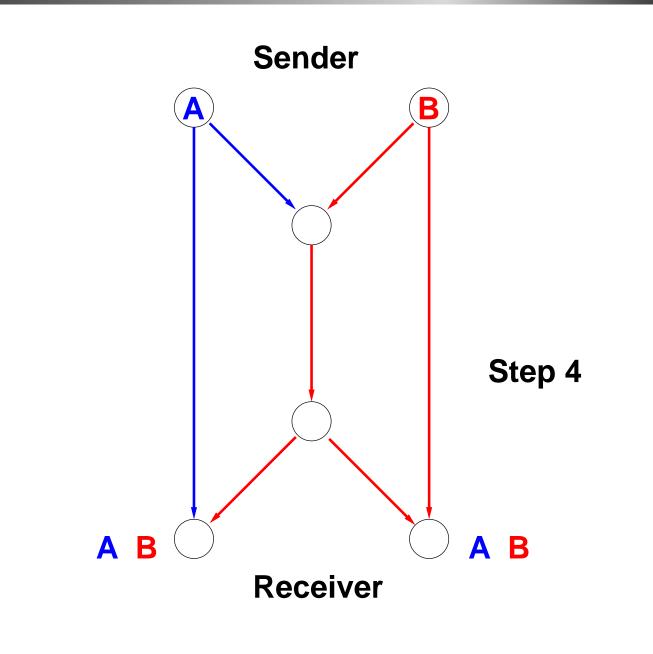


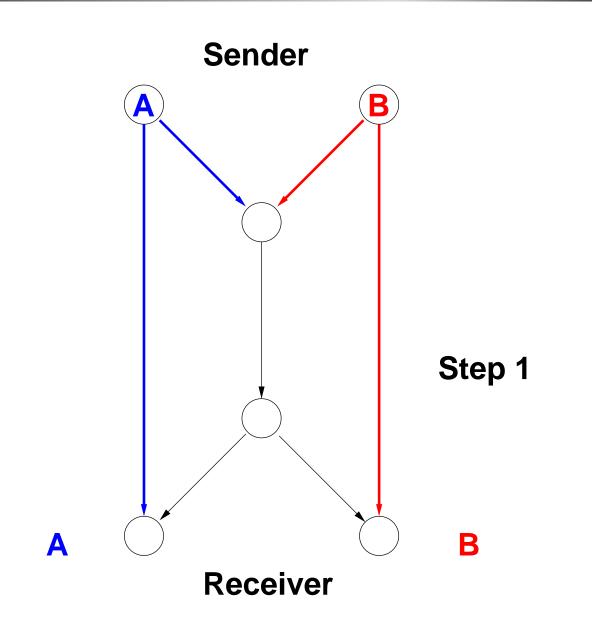


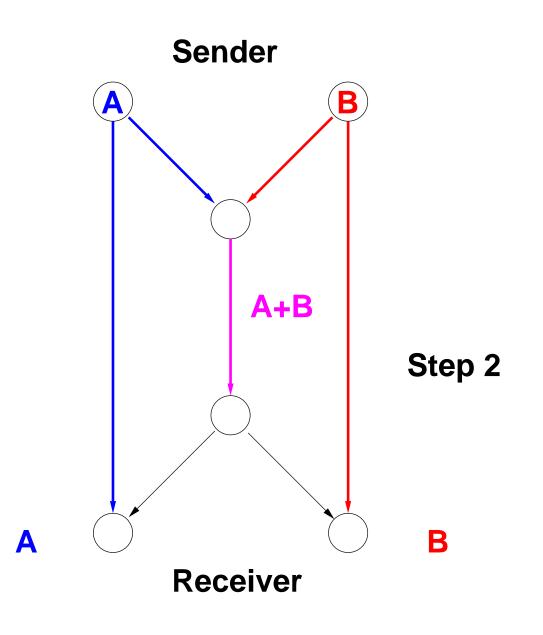


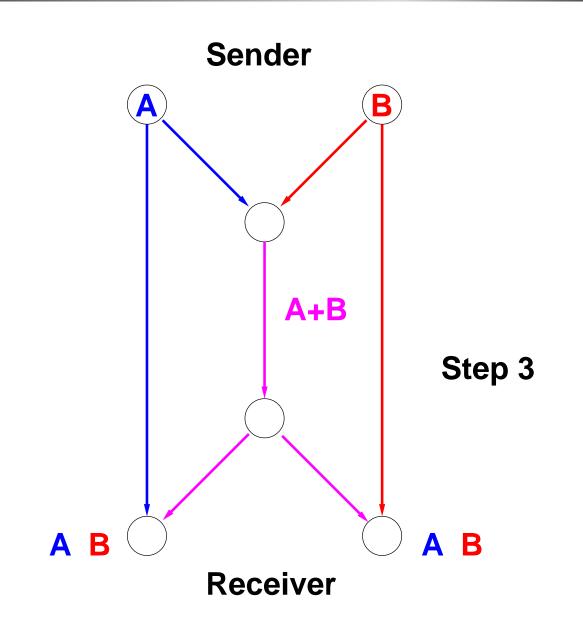












message:

• linear space

message:

• linear space

single node:

- receives vectors
- sends some linear combination of the incoming vectors

Error-Correcting Network Codes

codeword:

• linear subspace of $GF(q)^v$

codeword:

• linear subspace of $GF(q)^v$

distance d:

 distance in the Hasse diagram of the linear lattice of all subspaces of GF(q)^v

codeword:

• linear subspace of $GF(q)^v$

distance *d*:

 distance in the Hasse diagram of the linear lattice of all subspaces of GF(q)^v

U, W subspace of $GF(q)^v$:

 $d(U,W) = dim(U) + dim(W) - 2dim(U \cap W)$

Error-Correcting Network Codes

fix minimum distance *d*:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

Error-Correcting Network Codes

fix minimum distance *d*:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

Error-Correcting Network Codes

fix minimum distance *d*:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

constant dimension codes $\approx q-$ analogue of constant weight codes

Given a t - (v, k, 1) *q*-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension $\leq t - 1$.

Given a t - (v, k, 1) *q*-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension $\leq t - 1$.

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in exactly 1 k-subspace = Steiner system = prefect code

Given a t - (v, k, 1) *q*-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension $\leq t - 1$.

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in exactly 1 k-subspace

= Steiner system = prefect code

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

Define $A_q(v,k,d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance *d*, dimension of codewords = *k*, and ambient space = $GF(q)^v$

Define $A_q(v,k,d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance *d*, dimension of codewords = *k*, and ambient space = $GF(q)^v$

open problems:

- find lower and upper bounds for $A_q(v,k,d)$
- find constructions of 'good' codes
- special case $A_2(7,3,4)$ = existence of Fano plane

Construction

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

D:= incidence matrix between k-spaces and t-spaces in $GF(q)^v$

 $D_{U,V} := \begin{cases} 1 & t\text{-space } U \text{ is subspace of } k - \text{space } W \\ 0 & \text{else} \end{cases}$

Problem

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

Problem

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

solution = network code with minimum distance 2(k - t + 1).

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

- shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces
- \Rightarrow rows of elements in the same orbit on the *t*-spaces are identical

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

- shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces
- \Rightarrow rows of elements in the same orbit on the *t*-spaces are identical
 - $D^G :=$ shrinked matrix
- \Rightarrow number of columns = number of orbits on k-spaces number of rows = number of orbits on t-spaces

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

•
$$D^G x^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

•
$$D^G x^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

1

solution = network code with prescribed automorphisms and minimum distance 2(k - t + 1).

Results (binary)

U	k	number of codewords:		d
		new	old	
6	3	77	71	4
7	3	304	294	4
8	3	1275	1164	4
9	3	5621	4657	4
10	3	21483	18631	4
11	3	79833	74531	4
12	3	315315	298139	4

- real world v = 100
- complete system with encoding and decoding

T. Etzion, N. Silberstein: several papers on arxiv.org

A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance*, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

Thank you very much for your attention.

