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Combinatorial Designs

• a set of v points

a, b, c, d, e, f , g

• a set of blocks (block = set of points)

abe, adg, ac f , bcg, bd f , cde, e f g

• t − (v, k, λ) Design
each block is a k−set
each t−set of points is in exactly λ blocks

2 − (7, 3, 1) design
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Designs over Finite Fields

• a set of v points

linear v−space GF(q)v

• a set of k−blocks

a set of k−spaces in GF(q)v

• t − (v, k, λ) Design
each t−set of points is in exactly λ blocks

t − (v, k, λ) q−Design
each t−space of GF(q)v is in exactly
λ of the k−spaces
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Current State

known:
• Thomas (1987): first to study, 2−designs
• Braun, Kerber, Laue (2005): first 3−design

open problems:
• q−analog of the Fano plane?

• Steiner systems ? (λ = 1)
• t > 3?
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Network Codes

message:
• linear space

single node:
• receives vectors
• sends some linear combination of the incoming

vectors
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Error-Correcting Network Codes

codeword:
• linear subspace of GF(q)v

distance d:
• distance in the Hasse diagram of the linear lattice

of all subspaces of GF(q)v

U, W subspace of GF(q)v :

d(U, W) = dim(U) + dim(W)− 2dim(U ∩ W)
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Error-Correcting Network Codes

fix minimum distance d:

Find a set of subspaces in GF(q)v such that
the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k−subspaces in GF(q)v such
that the pairwise distance is at least 2d

constant dimension codes ≈ q− analogue of constant
weight codes
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Codes and Designs

Given a t − (v, k, 1) q−design we get a constant
dimension code with minimum distance 2(k − (t − 1))
as the intersection of two codewords has dimension
≤ t − 1.
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as the intersection of two codewords has dimension
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Find a set of k−subspaces in GF(q)v such
that each t−subspace is in exactly 1

k−subspace
= Steiner system = prefect code

Find a set of k−subspaces in GF(q)v such
that each t−subspace is in at most 1

k−subspace
= error-correcting network code
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Current State

Define Aq(v, k, d) as the maximal size (= number
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Current State

Define Aq(v, k, d) as the maximal size (= number
of codewords) of a constant dimension code with
minimum distance d, dimension of codewords = k, and
ambient space = GF(q)v

open problems:
• find lower and upper bounds for Aq(v, k, d)

• find constructions of ’good’ codes

• special case A2(7, 3, 4) = existence of Fano plane
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Problem

Find a set of k−subspaces in GF(q)v such
that each t−subspace is in at most 1

k−subspace
= error-correcting network code
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Problem

Find a set of k−subspaces in GF(q)v such
that each t−subspace is in at most 1

k−subspace
= error-correcting network code

D:= incidence matrix between k−spaces and
t−spaces in GF(q)v

DU,V :=

{

1 t-space U is subspace of k − space W

0 else
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Problem

Combinatorial optimization problem

Find a 0/1-solution x = (x1, . . . , xs) such that

• x1 + . . . + xs as large as possible

• DxT ≤







1
...
1







solution = network code with minimum distance
2(k − t + 1).
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Automorphisms

Automorphism ϕ on GF(q)v: U < W ⇐⇒ Uϕ
< Wϕ

G subgroup of Aut(GF(q)v)
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Automorphisms

Automorphism ϕ on GF(q)v: U < W ⇐⇒ Uϕ
< Wϕ

G subgroup of Aut(GF(q)v)

• shrink matrix D by: adding columns of elements in
the same orbit of G on the k−spaces

⇒ rows of elements in the same orbit on the t−spaces
are identical

• DG :=shrinked matrix

⇒number of columns = number of orbits on k−spaces
number of rows = number of orbits on t−spaces
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Reduced Problem

b1, . . . , bm orbit sizes on k−spaces. Find a 0/1-solution
x = (x1, . . . , xm) such that
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Reduced Problem

b1, . . . , bm orbit sizes on k−spaces. Find a 0/1-solution
x = (x1, . . . , xm) such that

• b1x1 + . . . + bmxm as large as possible

• DGxT ≤







1
...
1







solution = network code with prescribed automor-
phisms and minimum distance 2(k − t + 1).
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Results (binary)

v k number of
codewords:

new old

d

6 3 77 71 4

7 3 304 294 4

8 3 1275 1164 4

9 3 5621 4657 4

10 3 21483 18631 4

11 3 79833 74531 4

12 3 315315 298139 4
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Open Problems

• real world v = 100

• complete system with encoding and decoding
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Last Page

T. Etzion, N. Silberstein: several papers on arxiv.org

A. Kohnert, S. Kurz: Construction of Large Constant
Dimension Codes With a Prescribed Minimum
Distance, LNCS, 2008.

R. Kötter, F. Kschischang: Coding for errors and
erasures in random network coding, IEEE Transactions
on Information Theory, 54, 3579–3590, 2008.

Thank you very much for your attention.
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