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ABSTRACT. A method is given for the construction of linear codes with prescribed min-
imum distance and also prescribed minimum distance of the dual code. This works for
codes over arbitrary finite fields. In the case of binary codes Matsumoto et al. showed how
such codes can be used to construct cryptographic Boolean functions. This new method
allows to compute new bounds on the size of such codes, extending the table of Matsumoto
et al..
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1. INTRODUCTION

A linear [n, k]q−code C is a k−dimensional subspace of the vectorspace GF (q)n, where
GF (q) denotes the finite field with q elements. To use such a code C we work with a
generator matrix ΓC of C, which is a k × n matrix over GF (q) whose rows are a basis
of C. In coding theory we are interested in the minimum distance of the code C. For
this we define the Hamming distance between two codewords (i.e. elements from C)
u = (u1, . . . , un) and v = (v1, . . . , vn) as the number of coordinates which are different
(i.e. ui 6= vi). Then we define the minimum distance of C as the minimum of the Hamming
distance between all pairs of codewords from C. The interest in this number comes from
the fact that is possible to correct b(d− 1)/2c errors if we use a code C with minimum
distance d. Such a code is called an [n, k, d]q−code. In this paper d will also be called
primal distance.

One of the fundamental problems in coding theory [10] is the following:

Problem 1.1. For a fixed length n, dimension k and field GF (q) find a code C with
minimum distance d as large as possible.

This original problem was modified in [16] to study cryptographic problems. We denote
by C⊥ the dual code (i.e. the space of all words from GF (q)n which are orthogonal to all
words from C) and by d⊥ the minimum distance of the dual code. Now the problem in
[16] can be stated as follows:

Problem 1.2. For fixed parameters n, k, q and given primal distance d and given dual
distance d⊥ find a code C with these properties.
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Such a code is called an [n, k, d, d⊥]q−code. The interest in this questions comes from
the fact that the generator matrix of such a code in the binary case (i.e. q = 2) can be
used for the construction of cryptographic Boolean functions satisfying special propagation
properties [14].

2. GEOMETRIC DESCRIPTION

It is known that the above problem 1.1 of finding a [n, k]q−code of high minimum distance
can be restated in a geometrical setting. Denote by PG(k − 1, q) the finite projective
geometry of dimension k − 1 over the finite field GF (q). For our purpose we identify
PG(k−1, q) with the linear lattice of subspaces of GF (q)k. The points of PG(k−1, q) are
the one-dimensional subspaces, the hyperplanes are the (k−1)−dimensional subspaces. In
general an m−flat is the a (m+1)−dimensional subspace of GF (q)k. The correspondence
between k−dimensional codes over GF (q) is via the columns of a generator matrix. Each
column generates a one-dimensional subspace of GF (q)k. This defines a correspondence
φ between an n−element set of points in PG(k − 1, q) and an [n, k′]q−code where k′

may be less than k. To use φ for our purposes we have to restrict on one side to non-
degenerate codes (i.e. without an all-zero column in a generator matrix) and we have to
allow a multiset of points in PG(k − 1, q) on the other side to handle the case of columns
in the generator matrix, which are equal or differ only by the multiplication of a nonzero
element in GF (q). Then there is the well-known

Theorem 2.1. [2, 4]

There exists a non-degenerate [n, k]q− code with minimum distance at least d, if and only
if there is a multiset X of size n of points in PG(k − 1, q) with the property:

Each hyperplane in PG(k − 1, q) contains at most n− d points of X.

To handle the dual distance we have to use the following

Theorem 2.2. [2, 4]

Let C be a [n, k]q−code C with a check matrix Γ⊥. C has minimum distance greater or
equal d, if and only if there are no d− 1 columns in Γ⊥ which are linearly dependent.

Then the solution of the extended problem 1.2 can be formulated using above geometric
description.

Corollary 2.3.

There exists a non-degenerate [n, k]q− code with minimum distance at least d and dual
distance at least d⊥, if and only if there is a multiset X of size n of points in PG(k− 1, q)
with the following properties:

• each hyperplane in PG(k − 1, q) contains at most n− d points of X.
• each m−flat contains at most m + 1 points of X. (for all m from 0, . . . , d⊥ − 3)

The second condition is always true if we ask for dual distance 2. In this case we can get a
solution which is a real multiset. In all other cases with d⊥ greater than two, X will not be
a multiset, as the second condition says for m = 0 that there are no multiple points. In the
following we will try to construct an [n, k, d, d⊥]−code using this geometric description.
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3. DIOPHANTINE SYSTEM OF EQUATIONS

To use above characterization for the construction of codes satisfying the conditions of
corollary 2.3 we restate this using a Diophantine system of equations. This was already
done in [5, 6] for the case where we only prescribed the minimum distance and not also the
dual distance. Denote by Mm the (m−flat)–point incidence matrix of PG(k − 1, q). The
rows are labeled by the m−flats the columns are labeled by the points of PG(k − 1, q).
We have

Mm
i,j =

{
1 point j is in flat i

0 else
.

We denote the number of rows of Mm by rm. The number of columns is r0. Now we can
solve both problems from the introduction in Section 1 by solving a Diophantine system
of equations.

Theorem 3.1. [5, 6]

There exists a non-degenerate [n, k]q− code with minimum distance at least d, if and only
if there is a integral non-negative solution x = (x1, . . . , xr0) of the following Diophantine
system:

• x1 + . . . + xr0=n.

• Mk−2xT≤

 n− d
...

n− d

 .

where the inequality in the second part is to be read componentwise.

This Diophantine system is now enlarged by the conditions prescribing the dual distance:

Theorem 3.2.
There exists a non-degenerate [n, k]q− code with primal distance at least d and dual dis-
tance at least d⊥, if and only if there is a integral non-negative solution x = (x1, . . . , xr0)
of the following Diophantine system:

• x1 + . . . + xr0=n.

• Mk−2xT≤

 n− d
...

n− d

 .

• M0xT≤

 1
...
1

 .

• M1xT≤

 2
...
2

 .

•
...

• Md⊥−3xT≤

 d⊥ − 2
...

d⊥ − 2

 .
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4. PRESCRIBING AUTOMORPHISMS

The size of these Diophantine systems are given by the size of the corresponding projective
geometry. They become too large for increasing parameters k and q to be solved directly.
Like in the papers describing the solution of problem 1.1 we reduce the size of problem
by prescribing automorphisms. Let G be a subgroup of GL(k, q) acting on the subspaces
of GF (q)k. The induced action of G on the m−flats of PG(k − 1, q) gives a partition of
the rm m−flats into rG,m orbits denoted by ωG,m,1, ωG,m,2, . . .. By VG,m,i we denote an
representative of the orbit ωG,m,i. Then we define a condensed matrix MG,m by setting:

MG,m
i,j := |{x ∈ ωG,0,j : x ∈ VG,m,j}| .

This is a matrix with rG,m rows and rG,0 columns. This matrix is well-defined as the
definition is independent of the choice of the representative VG,m,i. We get the same
matrix if we add up the columns of Mm corresponding to the points in the orbit of G. The
action of G is compatible with the incidence relation. This means for points p and m−flats
V and φ ∈ G we have:

p ∈ V ⇐⇒ φ(p) ∈ φ(V ).

Therefore after the addition of columns the rows corresponding to m−flats in an orbit are
equal. If we take only one copy for each orbit we get again the matrix MG,m. This action
of G on the points (= columns of a generator matrix) is used for the following definition:
A linear code C has G as a group of symmetries if there is a generator matrix Γ of C
whose columns correspond to full orbits of G on the 1-subspaces of GF (q)k. We get a
new version of theorem 3.2 using the condensed matrix:

Theorem 4.1.

There exists a non-degenerate [n, k]q− code with primal distance at least d and dual dis-
tance at least d⊥and a group of symmetries which contains G as a subgroup if and only if
there is a integral non-negative solution x = (x1, . . . , xrG,0) of the following Diophantine
system:

• |ωG,0,1|x1 + . . . +
∣∣ωG,0,rG,0

∣∣ xrG,0=n.

• MG,k−2xT≤

 n− d
...

n− d

 .

• MG,0xT≤

 1
...
1

 .

• MG,1xT≤

 2
...
2

 .

•
...

• MG,d⊥−3xT≤

 d⊥ − 2
...

d⊥ − 2

 .
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5. RESULTS

For the binary case, which is the interesting for cryptographic applications, the authors

defined in [16] the number N(d, d⊥) as the minimal length of a linear binary code with
minimum distance d and dual distance d⊥. They gave lower and upper bounds and com-
puted the exact values for some combinations of the two parameters. This was done by
exhaustive search. Their result was the following table:

d\d⊥ 3 4 5 6
3 6 −
4 7 8
5 11 13 16
6 12 14 17 18
7 14 15
8 15 16

To extend their results we first make use of the classification of small binary linear codes
done by Anton Betten in [2]. Two binary codes are isomorphic if they differ only by a
permutation of the coordinates. The work of Betten allows us to specify the minimum
distance d and the length n, and we get (in the smaller cases) the number of different
(=non-isomorphic) codes together with a generator matrix. Given such a generator matrix
we compute the weight-enumerator together with the dual weight-enumerator, which we
get using MacWilliams theorem. This allows us to extend the table:

d\d⊥ 3 4 5 6 7 8
3 6 −
4 7 8
5 11 13 16
6 12 14 17 18
7 14 15 19− 20 20− 21 22
8 15 16 20− 21 21− 22 23 24

Using the program of Ryutaroh Matsumoto for the computation of the lower bound for
N(d, d⊥) given by their version of the linear programming bound in [16] we are able to
show that some of the newly found codes are as short as possible. The code C found for
N(7, 7) is a formally self-dual code. The weight-enumerator of C and C⊥ are equal. The
code found for N(8, 8) is a self-dual code. For larger numbers no classification results are
available. But we can apply the methods described in the previous section.

Using the methods described in Section 4 we were able to construct for fixed q, n, k linear
codes with prescribed distances d and d⊥ for arbitrary finite fields. As an example for the
non-binary case we give a table for q = 3 and k = 5 which lists for fixed d⊥ = 4 and all
lengths n the maximum possible minimum distance d for which we were able to construct
a code using our method. From the theory of caps in PG(4, 3) [12] it is known, that the
maximum length of code with d⊥ = 4 is 20.

n 6 7 8 9 10 11 12 13
d 2 2 3 4 5 6 6 6
n 14 15 16 17 18 19 20
d 7 8 8 9 10 11 12
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Only in the case n = 16 this number d may not be the best possible value. There may be
an other codes having primal distance 9 which we didn’t found using our method. In all
other cases it is known that the found minimum distance is at an upper limit, in most cases
given by the Griesmer bound.

This method works for arbitrary finite fields, so we define Nq(d, d⊥) as the minimal length
of a linear code over the alphabet GF (q) with minimum distance d and dual distance d⊥.
From the constructed codes we can give upper bounds for Nq(d, d⊥). From the above table
for q = 3 and k = 5 we get for example N3(4, 4) ≤ 9.

6. RELATED WORK

There are several papers, which study caps [1, 4, 11, 12] in the finite projective geometry
PG(k − 1, q). These are set of points with the additional property that on each line are at
most 2 points. Now one question is which is the maximal possible size of such a point-set.
If we translate the caps property into the language of the dual distance, we ask for dual
distance = 4 but without any restrictions on the primal distance.

The reduction of the (m−flat)–point incidence matrix Mm using automorphisms is a gen-
eral approach that works for many incidence structures for example designs [3, 15], q-
analogs of designs [8], parallelisms in projective geometries [7]. The first application was
in the work of Kramer and Mesner [13].

After the initial definition of the cryptographic applications it was already in the work of
Carlet that he looked at the Kerdock and Preparata codes [9]. These are linear codes over
the ring Z4. It would be interesting to apply the above method for the construction of codes
with prescribed dual distance also in the case of Z4 and other rings.
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