Classification of Linear Codes with Prescribed Minimum Distance and New Upper Bounds

Thomas Feulner

University of Bayreuth

3ICMCTA
September 13, 2011
Introduction

Motivation

- Gaps between lower and upper bounds – http://codetables.de. (Show existence or nonexistence for the upper bound)
- Full classification of linear codes having certain parameters. (There is no self-dual [72, 36, 16]_2-code with automorphism of order 7! – joint work with G. Nebe)

Inspired by

- I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Introduction

Motivation

- Gaps between lower and upper bounds – http://codetables.de (Show existence or nonexistence for the upper bound)

- Full classification of linear codes having certain parameters. (There is no self-dual [72, 36, 16]_2-code with automorphism of order 7! – joint work with G. Nebe)

Inspired by

- I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Introduction

Motivation

Gaps between lower and upper bounds – http://codetables.de. (Show existence or nonexistence for the upper bound)

Full classification of linear codes having certain parameters.

There is no self-dual \([72,36,16]^2\)-code with automorphism of order 7! – joint work with G. Nebe

I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Introduction

Motivation

- Gaps between lower and upper bounds – http://codetables.de. (Show existence or nonexistence for the upper bound)
- Full classification of linear codes having certain parameters. (There is no self-dual [72, 36, 16]_2-code with automorphism of order 7! – joint work with G. Nebe)

Inspired by

- I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Introduction

Motivation
- Gaps between lower and upper bounds – http://codetables.de. (*Show existence or nonexistence for the upper bound*)
- Full classification of linear codes having certain parameters. (*There is no self-dual [72, 36, 16]_2-code with automorphism of order 7! – joint work with G. Nebe*)

Inspired by
- I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Introduction

Motivation

- Gaps between lower and upper bounds – http://codetables.de. (Show existence or nonexistence for the upper bound)
- Full classification of linear codes having certain parameters. (There is no self-dual $[72, 36, 16]_2$-code with automorphism of order 7! – joint work with G. Nebe)

Inspired by

- I. Bouyukliev, E. Jacobsson, Results on Binary Linear Codes With Minimum Distance 8 and 10, arXiv.org, abs/1006.0109, (2010)
Basics

Notation

Let C be an $[n, k, d]_q$-code. If C^\perp has minimum distance d^\perp we also write $[n, k, d]_q^{d^\perp}$.

Semilinear Mappings

A mapping $\sigma : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is called semilinear, if there exists some $\alpha \in \text{Aut}(\mathbb{F}_q)$ with

- $\sigma(u + v) = \sigma(u) + \sigma(v)$
- $\sigma(\kappa u) = \alpha(\kappa)\sigma(u)$
Introduction

Inverting Construction \(Y_1 \)

Results

Basics

Notation

Let \(C \) be an \([n, k, d]_q\)-code. If \(C^\perp \) has minimum distance \(d^\perp \) we also write \([n, k, d]_{d^\perp} \).

Semilinear Mappings

A mapping \(\sigma : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n \) is called semilinear, if there exists some \(\alpha \in \text{Aut}(\mathbb{F}_q) \) with

\[
\begin{align*}
\sigma(u + v) &= \sigma(u) + \sigma(v) \\
\sigma(\kappa u) &= \alpha(\kappa)\sigma(u)
\end{align*}
\]
Basics

Notation

Let C be an $[n, k, d]_q$-code. If C^\perp has minimum distance d^\perp we also write $[n, k, d]_q^{d^\perp}$.

Semilinear Mappings

A mapping $\sigma : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$ is called semilinear, if there exists some $\alpha \in \text{Aut}(\mathbb{F}_q)$ with

- $\sigma(u + v) = \sigma(u) + \sigma(v)$
- $\sigma(\kappa u) = \alpha(\kappa)\sigma(u)$
Basics

Notation
Let C be an $[n, k, d]_q$-code. If C^\perp has minimum distance d^\perp we also write $[n, k, d]_q^{d^\perp}$.

Semilinear Mappings
A mapping $\sigma : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$ is called semilinear, if there exists some $\alpha \in \text{Aut}(\mathbb{F}_q)$ with
- $\sigma(u + v) = \sigma(u) + \sigma(v)$
- $\sigma(\kappa u) = \alpha(\kappa)\sigma(u)$
Basics

Code Equivalence

Two \([n, k, d]_q^{d\perp}\)-codes \(C, C'\) are equivalent \(\iff\) exists some semilinear isometry \(\iota\) with \(\iota(C) = C'\).

Equivalence of matrices

Similarly we say that generator (parity check) matrices are equivalent if they represent equivalent codes.

Transversal of equivalence classes

\(T(n, k, d, d^{\perp}, q)\) denotes a complete set of non-equivalent parity check matrices of all \([n, k, \geq d]_q^{d^{\perp}}\)-codes.
 Basics

Code Equivalence

Two \([n, k, d]_{q}^{d\perp}\)-codes \(C, C'\) are equivalent \(\iff\) exists some semilinear isometry \(\iota\) with \(\iota(C) = C'\).

Equivalence of matrices

Similarly we say that generator (parity check) matrices are equivalent if they represent equivalent codes.

Transversal of equivalence classes

\(T(n, k, d, d\perp, q)\) denotes a complete set of non-equivalent parity check matrices of all \([n, k, \geq d]_{q}^{d\perp}\)-codes.
Basics

Code Equivalence

Two \([n, k, d]_{q}^{d_{\perp}}\)-codes \(C, C'\) are equivalent \iff\ exists some semilinear isometry \(\iota\) with \(\iota(C) = C'\).

Equivalence of matrices

Similarly we say that generator (parity check) matrices are equivalent if they represent equivalent codes.

Transversal of equivalence classes

\(T(n, k, d, d_{\perp}, q)\) denotes a complete set of non-equivalent parity check matrices of all \([n, k, \geq d]_{q}^{d_{\perp}}\)-codes.
A canonical form algorithm

Unique Orbit Representatives

With the help of the algorithm

we can compute unique orbit representatives and hence determine $T(n, k, d, d^\perp, q)$ from a superset $\mathcal{T}(n, k, d, d^\perp, q)$ very efficiently.

Problem

Compute small supersets $\mathcal{T}(n, k, d, d^\perp, q)$ iteratively.
A canonical form algorithm

Unique Orbit Representatives

With the help of the algorithm

we can compute unique orbit representatives and hence determine \(T(n, k, d, d^\perp, q) \) from a superset \(\mathcal{T}(n, k, d, d^\perp, q) \) very efficiently.

Problem

Compute small supersets \(\mathcal{T}(n, k, d, d^\perp, q) \) iteratively.
Construction Y_1

Let C be an $[n, k, d]_q^{d^\perp}$-code. Then there exists an $[n - d^\perp, k - d^\perp + 1, \geq d]_q^{d^\perp}$-code.

Proof.

Without loss of generality C has a parity check matrix of the following form

$$
\Delta := \begin{pmatrix}
\Delta' \\
0_{n-d^\perp} \\
\chi \\
c
\end{pmatrix}
$$

with $(0_{n-d^\perp}, c) \in C^\perp$ a codeword of minimum distance $\text{wt}(c) = d^\perp$. The code with parity check matrix Δ' has got the desired parameters.
Construction Y_1

Let C be an $[n, k, d]_q^{d \perp}$-code. Then there exists an $[n - d \perp, k - d \perp + 1, \geq d]_q^{\geq \left\lceil \frac{d \perp}{q} \right\rceil}$-code.

Proof.

Without loss of generality C has a parity check matrix of the following form

$$\Delta := \begin{pmatrix} \Delta' & X \\ 0_{n-d \perp} & c \end{pmatrix}$$

with $(0_{n-d \perp}, c) \in C^\perp$ a codeword of minimum distance $\text{wt}(c) = d \perp$. The code with parity check matrix Δ' has got the desired parameters.
Inverting Construction Y_1

\[
\begin{align*}
n - d^\perp & \geq d \\
\geq \left\lceil \frac{d^\perp}{q} \right\rceil
\end{align*}
\]
Inverting Construction Y_1

$$n - d^\perp \geq d \geq \left\lceil \frac{d^\perp}{q} \right\rceil \geq d \geq 1$$
Inverting Construction Y_1

$$n - d_{\perp}$$

<table>
<thead>
<tr>
<th>$\geq d$</th>
<th>$\geq \left\lceil \frac{d_{\perp}}{q} \right\rceil$</th>
<th>$\geq d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$k - d_{\perp} - 1$</th>
<th>d</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>d_{\perp}</th>
</tr>
</thead>
</table>
\begin{equation}
\begin{align*}
\frac{n}{k} &\geq d \\
\frac{n}{k} - \frac{d^\perp}{q} &\geq d \\
\frac{n}{1} &\geq d \\
\frac{n}{2} &\geq d \\
\frac{n}{3} &\geq d \\
\frac{n}{d^\perp} &\geq d \\
\frac{n}{k - d^\perp - 1} &\geq d \\
\frac{n}{k} &\geq d \\
\frac{n}{k} - \frac{d^\perp}{q} &\geq d \\
\frac{n}{1} &\geq d \\
\frac{n}{2} &\geq d \\
\frac{n}{3} &\geq d \\
\frac{n}{d^\perp} &\geq d \\
\frac{n}{k - d^\perp - 1} &\geq d \\
\frac{n}{k} &\geq d \\
\end{align*}
\end{equation}
Inverting Construction \(Y_1 \)

Iteration Starting Point

Let \(S \) be an arbitrary transversal of parity check matrices of all \([n - d^\perp, k - d^\perp + 1, \geq d]_q\)-codes.

Existence of predecessors

Each equivalence class of parity check matrices of the \([n, k, \geq d]_q^{d^\perp}\)-codes contains at least one matrix

\[
\tilde{\Delta} = \begin{pmatrix} \Delta' & X \\ 0_{n-d^\perp} & 1_{d^\perp} \end{pmatrix}
\]

with

- \(\Delta' \in S \)
- \(X \in \mathbb{F}_q^{(n-k-1) \times d^\perp} \) with lexicographically ordered columns
Invertin Construction \(Y_1 \)

Iteration Starting Point

Let \(S \) be an arbitrary transversal of parity check matrices of all \([n - d^\perp, k - d^\perp + 1, \geq d]_q\) -codes.

Existence of predecessors

Each equivalence class of parity check matrices of the \([n, k, \geq d]_q^{d^\perp}\) -codes contains at least one matrix

\[
\tilde{\Delta} = \begin{pmatrix} \Delta' & X \\ 0_{n-d^\perp} & 1_{d^\perp} \end{pmatrix}
\]

with

- \(\Delta' \in S \)
- \(X \in \mathbb{F}_q^{(n-k-1)\times d^\perp} \) with lexicographically ordered columns
Inverting Construction \(Y_1 \)

Iteration Starting Point

Let \(S \) be an arbitrary transversal of parity check matrices of all \([n - d^\perp, k - d^\perp + 1, \geq d]_q\)-codes.

Existence of Predecessors

Each equivalence class of parity check matrices of the \([n, k, \geq d]_q^{d^\perp}\)-codes contains at least one matrix

\[
\tilde{\Delta} = \begin{pmatrix}
\Delta' \\
0_{n-d^\perp} \\
\end{pmatrix}
\begin{pmatrix}
X \\
1_{d^\perp}
\end{pmatrix}
\]

with

- \(\Delta' \in S \)
- \(X \in \mathbb{F}_q^{(n-k-1) \times d^\perp} \) with lexicographically ordered columns.
Inverting Construction \(Y_1 \)

Iteration Starting Point

Let \(S \) be an arbitrary transversal of parity check matrices of all \([n - d\perp, k - d\perp + 1, \geq d]_q\)-codes.

Existence of predecessors

Each equivalence class of parity check matrices of the \([n, k, \geq d]_q^{d\perp}\)-codes contains at least one matrix

\[
\tilde{\Delta} = \begin{pmatrix}
\Delta' & X \\
0_{n-d\perp} & 1_{d\perp}
\end{pmatrix}
\]

with

- \(\Delta' \in S \)
- \(X \in \mathbb{F}_q^{(n-k-1) \times d\perp} \) with lexicographically ordered columns
A special transversal

Choosing the smallest matrix

\[\tilde{\Delta} = \begin{pmatrix} \Delta' & X \\ 0_{n-d^\perp} & 1_{d^\perp} \end{pmatrix} \]

in each equivalence class defines a transversal \(T(n, k, d, d^\perp, S, q) \).
Inverting Construction Y_1

\[T(n, k, d, d^\perp, S, q) \]
Inverting Construction Y_1

\[T(n, k, d, d^\perp, S, q) \]

\[T(n, k, d, 1, S, q) \]
Inverting Construction Y_1

\[n - d^\perp \]

\[T(n, k, d, 1, S, q) \]

\[T(n, k, d, 2, S, q) \]

\[T(n, k, d, d^\perp, S, q) \]
Inverting Construction Y_1

\[
T(n, k, d, 1, S, q) \quad T(n, k, d, 2, S, q) \quad T(n, k, d, d_\perp, S, q)
\]
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $\mathcal{T}(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0_{n-d\perp} & 1 \end{pmatrix} | \Delta' \in S \right\}$
- Filter $\mathcal{T}(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d\perp, S, q), \; d\perp \geq 2$

- Compute $\mathcal{T}(n, k, d, d\perp, S, q)$: For all

\[
\begin{pmatrix}
\Delta' & 0 & x_1 & \cdots & x_{d\perp-2} \\
0_{n-d\perp} & 1 & 1 & \cdots & 1
\end{pmatrix} \in T(n-1, k-1, d, d\perp-1, S, q)
\]

add all possible columns \(x_{d\perp-1} \geq x_{d\perp-2}\) which fulfills the conditions on d and $d\perp$.
- Filter $\mathcal{T}(n, k, d, d\perp, S, q)$ for nonisomorphic copies.
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $\mathcal{T}(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0 & 1 \end{pmatrix} | \Delta' \in S \right\}$

- Filter $\mathcal{T}(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d^\perp, S, q)$, $d^\perp \geq 2$

- Compute $\mathcal{T}(n, k, d, d^\perp, S, q)$: For all

\[
\begin{pmatrix}
\Delta' & 0 & x_1 & \cdots & x_{d^\perp-2} \\
0_{n-d^\perp} & 1 & 1 & \cdots & 1
\end{pmatrix}
\in T(n-1, k-1, d, d^\perp-1, S, q)
\]

add all possible columns $\left(\begin{array}{c} x_{d^\perp-1} \\ 1 \end{array} \right)$ with $x_{d^\perp-1} \geq x_{d^\perp-2}$ which fulfills the conditions on d and d^\perp.

- Filter $\mathcal{T}(n, k, d, d^\perp, S, q)$ for nonisomorphic copies.
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $T(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0_{n-d} & 1 \end{pmatrix} | \Delta' \in S \right\}$
- Filter $T(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d^\perp, S, q), \ d^\perp \geq 2$

- Compute $T(n, k, d, d^\perp, S, q)$: For all
 \[
 \begin{pmatrix}
 \Delta' & 0 & x_1 & \cdots & x_{d^\perp-2} \\
 0_{n-d^\perp} & 1 & 1 & \cdots & 1
 \end{pmatrix}
 \in T(n-1, k-1, d, d^\perp-1, S, q)

 add all possible columns ($x_{d^\perp-1}$) with $x_{d^\perp-1} \geq x_{d^\perp-2}$ which fulfills the conditions on d and d^\perp.
- Filter $T(n, k, d, d^\perp, S, q)$ for nonisomorphic copies.
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $\mathcal{T}(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0_{n-d} & 1 \end{pmatrix} | \Delta' \in S \right\}$
- Filter $\mathcal{T}(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d^\perp, S, q), \ d^\perp \geq 2$

- Compute $\mathcal{T}(n, k, d, d^\perp, S, q)$: For all

 $\begin{pmatrix} \Delta' & 0 & x_1 & \cdots & x_{d^\perp-2} \\ 0_{n-d^\perp} & 1 & 1 & \cdots & 1 \end{pmatrix} \in T(n-1, k-1, d, d^\perp-1, S, q)$

 add all possible columns $(\begin{pmatrix} x_{d^\perp-1} \\ 1 \end{pmatrix})$ with $x_{d^\perp-1} \geq x_{d^\perp-2}$ which fulfills the conditions on d and d^\perp.
- Filter $\mathcal{T}(n, k, d, d^\perp, S, q)$ for nonisomorphic copies.
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $\mathcal{T}(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0_{n-d\perp} & 1 \end{pmatrix} \mid \Delta' \in S \right\}$
- Filter $\mathcal{T}(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d\perp, S, q), \ d\perp \geq 2$

- Compute $\mathcal{T}(n, k, d, d\perp, S, q)$: For all

$$\begin{pmatrix} \Delta' & 0 & x_1 & \cdots & x_{d\perp-2} \\ 0_{n-d\perp} & 1 & 1 & \cdots & 1 \end{pmatrix} \in T(n-1, k-1, d, d\perp-1, S, q)$$

add all possible columns $\begin{pmatrix} x_{d\perp-1} \\ 1 \end{pmatrix}$ with $x_{d\perp-1} \geq x_{d\perp-2}$ which fulfills the conditions on d and $d\perp$.

- Filter $\mathcal{T}(n, k, d, d\perp, S, q)$ for nonisomorphic copies.
Details

Computation of $T(n, k, d, 1, S, q)$

- Define $\mathcal{T}(n, k, d, 1, S, q) := \left\{ \begin{pmatrix} \Delta' & 0 \\ 0_{n-d\perp} & 1 \end{pmatrix} | \Delta' \in S \right\}$
- Filter $\mathcal{T}(n, k, d, 1, S, q)$ for nonisomorphic copies

Computation of $T(n, k, d, d\perp, S, q), \ d\perp \geq 2$

- Compute $\mathcal{T}(n, k, d, d\perp, S, q)$: For all
 \[
 \begin{pmatrix}
 \Delta' & 0 & x_1 & \cdots & x_{d\perp-2} \\
 0_{n-d\perp} & 1 & 1 & \cdots & 1
 \end{pmatrix} \in T(n-1, k-1, d, d\perp-1, S, q)
 \]
 add all possible columns $\begin{pmatrix} x_{d\perp-1} \\ 1 \end{pmatrix}$ with $x_{d\perp-1} \geq x_{d\perp-2}$ which fulfills the conditions on d and $d\perp$.
- Filter $\mathcal{T}(n, k, d, d\perp, S, q)$ for nonisomorphic copies.
An Example: Does a $[21, 14, 6]_4$-code exist?

From http://codetables.de we determine that $d^\perp \in \{9, 10, 11\}$. The following table gives the number of equivalence classes for $d \geq 6$, distinguished by d^\perp:

<table>
<thead>
<tr>
<th>n</th>
<th>$n - k = 6$</th>
<th>$n - k = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$1^0 \ldots 5^0 6^1$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1^1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2^2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3^7</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4^{13}</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>5^9</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>6^5</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>7^1</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>8^1</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>9^0</td>
</tr>
</tbody>
</table>
An Example: Does a $[21, 14, 6]_4$-code exist?

From http://codetables.de we determine that $d^\perp \in \{9, 10, 11\}$. The following table gives the number of equivalence classes for $d \geq 6$, distinguished by d^\perp:

<table>
<thead>
<tr>
<th>n</th>
<th>$n - k = 6$</th>
<th>$n - k = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$1^0 \ldots 4^0 5^1$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$1^0 \ldots 5^0 6^1$</td>
<td>1^1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1^1</td>
</tr>
<tr>
<td>14</td>
<td>2^2</td>
<td>3^30</td>
</tr>
<tr>
<td>15</td>
<td>3^7</td>
<td>4^88</td>
</tr>
<tr>
<td>16</td>
<td>4^{13}</td>
<td>5^{64}</td>
</tr>
<tr>
<td>17</td>
<td>5^9</td>
<td>6^{17}</td>
</tr>
<tr>
<td>18</td>
<td>6^5</td>
<td>7^1</td>
</tr>
<tr>
<td>19</td>
<td>7^1</td>
<td>8^0</td>
</tr>
<tr>
<td>20</td>
<td>8^1</td>
<td>9^0</td>
</tr>
<tr>
<td>21</td>
<td>9^0</td>
<td>10^0</td>
</tr>
</tbody>
</table>
An Example: Does a $[21, 14, 6]_4$-code exist?

From http://codetables.de we determine that $d^\perp \in \{9, 10, 11\}$. The following table gives the number of equivalence classes for $d \geq 6$, distinguished by d^\perp:

<table>
<thead>
<tr>
<th>n</th>
<th>$n - k = 6$</th>
<th>$n - k = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10…30 42</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10…40 51</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10…50 61</td>
<td>12 251</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>26 31219</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>330 47431</td>
</tr>
<tr>
<td>15</td>
<td>37</td>
<td>488 53797</td>
</tr>
<tr>
<td>16</td>
<td>413</td>
<td>564 6261</td>
</tr>
<tr>
<td>17</td>
<td>59</td>
<td>617 74</td>
</tr>
<tr>
<td>18</td>
<td>65</td>
<td>71 80</td>
</tr>
<tr>
<td>19</td>
<td>71</td>
<td>80 90</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>90 100</td>
</tr>
<tr>
<td>21</td>
<td>90</td>
<td>100 110</td>
</tr>
</tbody>
</table>
Results

Nonexistence

There are no codes with parameters

- $[35, 10, 13]_2$
- $[22, 8, 10]_3, [24, 14, 7]_3, [28, 21, 5]_3$
- $[19, 8, 9]_4, [21, 14, 6]_4, [22, 16, 5]_4, [27, 17, 8]_4, [30, 21, 7]_4, [39, 27, 9]_4$
- $[16, 5, 10]_5, [16, 6, 9]_5, [17, 8, 8]_5$
- $[15, 8, 7]_7, [26, 20, 6]_7$
- $[30, 23, 7]_8, [37, 31, 5]_8$

and 391 derived new upper bounds.

Existence

There is a $[17, 11, 6]_9$-code.
Results

Nonexistence

There are no codes with parameters

- $[35, 10, 13]_2$
- $[22, 8, 10]_3$, $[24, 14, 7]_3$, $[28, 21, 5]_3$
- $[19, 8, 9]_4$, $[21, 14, 6]_4$, $[22, 16, 5]_4$, $[27, 17, 8]_4$, $[30, 21, 7]_4$, $[39, 27, 9]_4$
- $[16, 5, 10]_5$, $[16, 6, 9]_5$, $[17, 8, 8]_5$
- $[15, 8, 7]_7$, $[26, 20, 6]_7$
- $[30, 23, 7]_8$, $[37, 31, 5]_8$

and 391 derived new upper bounds.

Existence

There is a $[17, 11, 6]_9$-code.
Thank you for your attention.