Abstract
 On intersections of perfect binary codes

Sergey V. Avgustinovich

Sobolev institute of Mathematics, pr. ac. Koptyuga 4, Novosibirsk 630090, Russia (avgust@math.nsc.ru)

Olof Heden

Department of Mathematics, KTH, S-100 44 Stockholm, Sweden (olohed@math.kth.se)
\section*{Faina I. Solov'eva}

Sobolev institute of Mathematics, pr. ac. Koptyuga 4, Novosibirsk 630090, Russia (sol@math.nsc.ru)

A perfect 1-error correcting binary code is a subset C of the direct product E^{n} of n copies of the finite field E with two elements satisfying the following condition: for any word $x \in E^{n}$ there is a unique word $c \in C$ such that the number of coordinates in which x and c differ is at most one.

Here we are concerned with the following problem: which are the possibilities for the number of words $\eta\left(C_{1}, C_{2}\right)$ in the intersection of two perfect codes C_{1} and C_{2}, containing the all-zero word? This problem was proposed by Etzion and Vardy in 1998. They established that for any two distinct perfect codes C_{1} and C_{2} of length $n=2^{m}-1$

$$
2 \leq \eta\left(C_{1}, C_{2}\right) \leq 2^{n-\log _{2}(n+1)}-2^{(n-1) / 2}
$$

They also proved that there are perfect codes C_{1} and C_{2} of length $n=2^{m}-1$, for $m \geq 3$, such that

$$
\eta\left(C_{1}, C_{2}\right)=k 2^{(n-1) / 2} \quad \text { for all } \quad k=1,2, \ldots, 2^{(n+1) / 2-\log _{2}(n+1)}-1
$$

and constructed pairs of perfect codes C_{1} and C_{2} with $\eta\left(C_{1}, C_{2}\right)=2$ for any admissible length n.

We prove that for any two integers k_{1} and k_{2} satisfying

$$
1 \leq k_{i} \leq 2^{(n+1) / 2-\log _{2}(n+1)}, i=1,2
$$

there exist perfect codes C_{1} and C_{2}, both of length $n=2^{m}-1, m \geq 4$, with intersection number

$$
\eta\left(C_{1}, C_{2}\right)=2 k_{1} k_{2}
$$

