Abstract

On intersections of perfect binary codes

Sergey V. Avgustinovich

Sobolev institute of Mathematics, pr. ac. Koptyuga 4, Novosibirsk 630090, Russia (avgust@math.nsc.ru)

Olof Heden

Department of Mathematics, KTH, S-100 44 Stockholm, Sweden (olohed@math.kth.se)

Faina I. Solov'eva

Sobolev institute of Mathematics, pr. ac. Koptyuga 4, Novosibirsk 630090, Russia (sol@math.nsc.ru)

A perfect 1-error correcting binary code is a subset C of the direct product E^n of n copies of the finite field E with two elements satisfying the following condition: for any word $x \in E^n$ there is a unique word $c \in C$ such that the number of coordinates in which x and c differ is at most one.

Here we are concerned with the following problem: which are the possibilities for the number of words $\eta(C_1, C_2)$ in the intersection of two perfect codes C_1 and C_2 , containing the all-zero word? This problem was proposed by Etzion and Vardy in 1998. They established that for any two distinct perfect codes C_1 and C_2 of length $n = 2^m - 1$

$$2 \le \eta(C_1, C_2) \le 2^{n - \log_2(n+1)} - 2^{(n-1)/2}.$$

They also proved that there are perfect codes C_1 and C_2 of length $n = 2^m - 1$, for $m \ge 3$, such that

 $\eta(C_1, C_2) = k 2^{(n-1)/2}$ for all $k = 1, 2, \dots, 2^{(n+1)/2 - \log_2(n+1)} - 1$

and constructed pairs of perfect codes C_1 and C_2 with $\eta(C_1, C_2) = 2$ for any admissible length n.

We prove that for any two integers k_1 and k_2 satisfying

$$1 < k_i < 2^{(n+1)/2 - \log_2(n+1)}, i = 1, 2,$$

there exist perfect codes C_1 and C_2 , both of length $n = 2^m - 1$, $m \ge 4$, with intersection number

$$\eta(C_1, C_2) = 2k_1k_2.$$