Abstract

A generalization of difference matrices and its applications to graph decompositions

Anita Pasotti

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 53, I-20125 Milano, Italy

Given an additive group G and a graph Γ with vertex-set $V(\Gamma)=\{x_1,x_2,...,x_k\}$, we define a (G,Γ,λ) -difference matrix to be a $(k\times \lambda|G|)$ -matrix M with entries from G such that if $[x_i,x_j]\in E(\Gamma)$, then the difference between the i-th and j-th row of M contains each element of G exactly λ times.

This is a generalization of the well known concept of a (G,k,λ) -difference matrix that, obviously, can be viewed as a (G,Γ,λ) -difference matrix where Γ is the complete graph on k vertices.

We show how our generalization is useful in the recursive construction for graph decompositions admitting a sharply vertex transitive automorphism group.