Abstract
 A generalization of difference matrices and its applications to graph decompositions

Anita Pasotti

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 53, I-20125 Milano, Italy
Given an additive group G and a graph Γ with vertex-set $V(\Gamma)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, we define a (G, Γ, λ)-difference matrix to be a $(k \times \lambda|G|)$-matrix M with entries from G such that if $\left[x_{i}, x_{j}\right] \in E(\Gamma)$, then the difference between the i-th and j-th row of M contains each element of G exactly λ times.

This is a generalization of the well known concept of a (G, k, λ)-difference matrix that, obviously, can be viewed as a (G, Γ, λ)-difference matrix where Γ is the complete graph on k vertices.

We show how our generalization is useful in the recursive construction for graph decompositions admitting a sharply vertex transitive automorphism group.

