Abstract Short formulas for algebraic curvature tensors via Algebraic Combinatorics

Bernd Fiedler

Eichelbaumstr. 13, D-04249 Leipzig, Germany Bernd.Fiedler.RoschStr.Leipzig@t-online.de

Algebraic curvature tensors $\Re(x, y, z, u)$ or covariant derivative curvature tensors $\Re'(x, y, z, u, v)$ are covariant tensors of order 4 or 5 which have the same symmetry properties as the Riemann tensor R or its covariant derivative ∇R , respectively.

We show that the spaces of tensors \mathfrak{R} and \mathfrak{R}' are generated by Young symmetrized product tensors

$$\mathfrak{R}: y_t^*(U \otimes w), y_t^*(w \otimes U) \quad , \quad \mathfrak{R}': y_{t'}^*(U \otimes W), y_{t'}^*(W \otimes U)$$
(1)

where w, W, U are covariant tensors of orders 1, 2, 3. Further W is a symmetric or alternating tensor, whereas U belongs to an irreducible symmetry class characterized by the partition (2, 1). y_t and $y_{t'}$ denote the Young symmetrizers of the Young tableaux

$$t = \begin{array}{cccc} 1 & 3 \\ 2 & 4 \end{array}$$
, $t' = \begin{array}{cccc} 1 & 3 & 5 \\ 2 & 4 \end{array}$

Examples of tensors U are given by

$$\nabla \sigma - \operatorname{sym}(\nabla \sigma)$$
 , $\nabla \tau - \mathrm{d}\tau$

where σ , τ are symmetric/alternating tensor fields of order 2 and ∇ is a torsion free covariant derivative.

The set of all symmetry classes from which U can be taken forms an infinite 1-parameter family \mathfrak{S}_{α} , $\alpha \in (-\infty, \infty]$. For both \mathfrak{R} and \mathfrak{R}' , there exists exactly one value α_0 such that the expressions (1) vanish for all $U \in \mathfrak{S}_{\alpha_0}$. For all other $\alpha \neq \alpha_0$ the tensors $U \in \mathfrak{S}_{\alpha}$ lead to generators (1) of algebraic tensors \mathfrak{R} and \mathfrak{R}' .

The membership $U \in \mathfrak{S}_{\alpha}$ in a symmetry class \mathfrak{S}_{α} leads to a set of linear identities

$$\sum_{p \in S_3} c_p(\alpha) U_{i_{p(1)}i_{p(2)}i_{p(3)}} = 0$$
(2)

in which the coefficients $c_p(\alpha)$ are rational functions of α . For $\mathfrak{R}, \mathfrak{R}'$ we determine finite sets $\mathcal{A}, \mathcal{A}' \subseteq (-\infty, \infty]$ such that the length of the coordinate representation

$$\Re: \sum_{q \in S_4} s_q U_{i_q(1)} i_{q(2)} i_{q(3)} w_{i_q(4)} \quad , \quad \Re': \sum_{q \in S_5} s_q U_{i_q(1)} i_{q(2)} i_{q(3)} W_{i_q(4)} i_{q(5)}$$

of an expression (1) can be minimized by means of (2) iff $\alpha \in \mathcal{A}$ or $\alpha \in \mathcal{A}'$. Furthermore, if the length of an expression (1) is minimal then U admits an index commutation symmetry.

Foundation of our investigations is a theorem of S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins which says that the above Young symmetrizers y_t , $y_{t'}$ generate the symmetry classes of algebraic tensors \mathfrak{R} , \mathfrak{R}' . Furthermore we apply ideals and idempotents in group rings $\mathbb{C}[\mathcal{S}_r]$, the Littlewood-Richardson rule and discrete Fourier transforms for symmetric groups \mathcal{S}_r . For certain symbolic calculations we used the Mathematica packages Ricci and PERMS.